自动做市商(AMM)算法的数学原理及其未来发展(上篇)_UNI:htt币价格今日行情

在本文中,我们将首先回顾由Bancor、Uniswap、Balancer和Curve协议实现的四种自动做市商(AMM)算法。还将讨论AMM算法的最新发展、可能的改进和未来。

本文总共分为上、中、下篇阐述自动做市商算法、现状及未来迭代的思考,本文为上篇。

目录

BancorNetwork的联合曲线概念和交易公式

Uniswap的无常损失计算?

当价格变动在2ρ之间时的正向收益

流动性分布、流动性注入、UniswapV3范围订单

Balancer的做市函数和交易公式

智能订单路由算法

......

BancorNetwork的联合曲线概念和交易公式:

Bancor1利用联合曲线的概念来确定价格。联合曲线是代币价格与其总供应量之间的关系。

Bancor1?

BancorProtocolContinuousLiquidityforCryptographicTokensthroughtheirSmartContracts

https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf

联合曲线BondingCurve:

联合曲线模型可以理解为描述“代币买卖价格”与“代币发行总量”之间的函数关系,可以由智能合约以去中心化的方式自动执行。

https://medium.com/linum-labs/intro-to-bonding-curves-and-shapes-bf326bc4e11a

BancorNetwork选择的不变量是F,称为连接权重。在第一个表达式中R是指流动性池中的储备代币数量,S是流动性池外的BNT总供应量,P是BNT和储备代币的相对价格。我们可以代入P的方程,对两边积分2得到P和S之间的关系。这是一个指数表达式,其中指数α与连接权重F有关。F越小,α越大,这意味着价格相对于BNT的总供应量变化得更快。

两边积分2

FormulasforBancorsystem

https://drive.google.com/file/d/0B3HPNP-GDn7aRkVaV3dkVl9NS2M/view?resourcekey=0-mbIgrdd0B9H8dPNRaeB_TA

使用这个表达式和简单的积分,我们可以导出T和E之间的关系,其中R0,S0是R和S的当前值。

如果我们想在代币A和代币B之间交换,则将代币A出售给代币B。我们首先需要使用代币A从池A购买BNT代币。接下来,我们需要使用BNT从池B购买代币B。下面是计算我们将收到多少代币所需的精确公式。代币A和代币B之间的相对价格可以用BNT代币和代币A/B之间的相对价格表示。

优点:Bancor允许在某些池中进行单边流动性的注入,这由Bancor治理决定。可以存入多少单边流动性是有限制的,这也是由Bancor治理决定的。在限额内,当用户以其他代币的形式存入单边流动性时,Bancor将补充等值的BNT代币。这使得用户提供的有效流动性加倍。如果达到限额,如果人们想要存单边流动性,就得等有人提取单边流动性,或者有人把BNT做为单边流动性注入。

Bancor协议以BNT部分赚取的手续费补偿用户在存入单边流动性时的无常损失。如果交易费用不能完全补偿无常损失,Bancor将铸造BNT以确保无常损失为零。因此,流动性提供者如果将流动性存入一定的时间,就可以享受稳定的收入。

缺点:如上所述,所有交易都需要BNT代币作为中介。因此,我们将经历两次滑点。由于相同的原因,所有流动性池都由BNT和另一个代币组成,因此缺乏多样性。BNT代币价格也可能受到影响,因为需要弹性供应才能实现无常损失补偿和单边流动性存款。

Bancor引入了连接代币BNT的概念,它连接到所有具有不同连接权重的代币,对应不同决定价格的联合曲线。

Uniswap的无常损失计算:

Uniswap使用恒定乘积做市商(CPMM)来决定价格。在我们深入研究UniswapV2和V3使用的算法之前,让我们先了解什么是无常损失(IL)以及如何计算它。

恒定乘积做市商(CPMM)

ConstantProductMarketMaker

强制要求两种资产储备量的乘积必须始终保持不变x*y=k

https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281

无常损失

ImpermanentLoss

是指资金在流动性池中面临的损失。

https://finematics.com/impermanent-loss-explained/

如果AMM函数是凸的,那么没有交易费用补偿的单笔交易总是会导致流动性提供者赔钱。假设一笔交易导致AMM函数从点1移动到点2。点1和点2的现货价格是P1和P2。P3为实际交易价格。由于凸函数的性质,P1>P3>P2。无常损失定义为交易后池中流动性提供者代币的当前价值与流动性提供者的代币当前价值之间的差值,如果他只是持有他的代币而不将它们用于流动性提供,则表示为V和Vheld。为方便起见,无常损失和价格将以代币Y表示。经过一些简单的推导,很容易证明无常损失总是小于零。

Uniswap3V2使用一个简单但功能强大的公式来确定交易。池代币储备数量的乘积是一个常数。与Bancor相比,它摆脱了连接代币的依赖。交易完全由流动性池中的代币数量决定。

Uniswap3

UniswapV2Core

https://uniswap.org/whitepaper.pdf

由于此函数的性质,池中两个代币的价值将始终相同。

使用相同的逻辑,不难计算UniswapV2中单笔无手续费的无常损失。假设交易将价格从P更改为Pk。以百分比衡量的无常损失可以单独表示为k的函数。

毫不奇怪,这个函数总是小于或等于零,正如我们从上面没有费用的无常损失图中可以看出的。如果在对数空间中绘制横轴,则IL(k)将是对称的。结论是:相对价格变化越大,无常损失就越大。这可以解释为流动性提供者的更有价值的代币从池中被买出,留给他们更多价值较低的代币。

当价格变动在2ρ之间时的正向收益:

接下来,让我们看看如果我们添加交易费用,IL(k)会如何表现:

导出的无常损失函数IL(k,ρ)看起来与无费用的无常损失函数非常相似。我们可以通过将ρ设置为零来进行合理性验证,得出相同的结果。典型的UniswapV2费用百分比为ρ=0.3%。在绘制无常损失函数时,我们可以看到在大约k=0.994到1之间有一个高于零的部分。在该地区,无常损失是正的,这意味着流动性提供者实际上获得了价值。通过引入交易费,当价格在一定范围内波动时,流动性提供者将获得正收益。

当价格变动更加波动时,流动性提供者似乎总是会出现亏损。然而,实际情况并非如此。我们知道DaveWhite4等人解决了这个难题。遗憾的是,它超出了这篇介绍性论文的范围。我们打算在未来进一步研究这个问题。

DaveWhite4

Uniswap’sFinancialAlchemy

https://research.paradigm.xyz/uniswaps-alchemy

至于其他流行的AMM算法的无常损失推导,我们向读者推荐JiahuaXu?等人的这篇论文。这些推导将是下一次的主题。

JiahuaXu?

SoK:DecentralizedExchanges(DEX)withAutomatedMarketMaker(AMM)protocols

https://arxiv.org/abs/2103.12732

优点:第一个用池中代币数量的凸函数来确定价格。

缺点:流动性供应均匀分布于所有价格范围,这意味着资本效率较低。

流动性分布、流动性注入、UniswapV3范围订单:

为了提高流动性效用并降低无常损失风险,Uniswap?V3允许用户仅在特定价格范围内提供流动性。

Uniswap?

UniswapV3Core

https://uniswap.org/whitepaper-v3.pdf

FromUniswapV3whitepaper

这是通过对UniswapV2函数进行平移来实现的:

FromUniswapV3whitepaper

将函数向下平移a点的y值,向左平移b点的x值,如上图和等式所示,确保a和b之间的有效交易结果,就像我们使用绿色曲线作为我们的价格决定函数。当价格超出此范围时,其中一个代币储备将被售罄,从而有效地将流动性集中到此价格范围内。

DanRobinson?发表了一篇关于计算多个AMM的流动性分布的优秀论文。

DanRobinson?

UniswapV3:TheUniversalAMM

https://www.paradigm.xyz/2021/06/uniswap-v3-the-universal-amm/

也可以简单地证明,两个流动性提供者在同一价格范围内的流动性可以简单地加在一起。

在存入流动性时,如上所示,UniswapV3中每个资产的价值不一定相等。只有当P等于Pa和Pb的几何平均值时,每个资产的价值才相等。当P小于几何平均值时,资产X的价值大于资产Y的价值。当P大于几何平均值时,资产X的价值小于资产Y的价值。

当当前价格完全超出流动性提供者设定的价格区间时,UniswapV3将流动性提供者的输入算作范围订单(RangeOrder),只允许其存入一种代币。例如,考虑一个由ETH和Dai组成的流动性池。如果设定的价格区间完全高于ETH的当前价格,则只允许用户存入ETH。如果价格区间完全低于ETH的当前价格,则只允许用户存入Dai。当价格完全越过流动性提供者设定的价格区间时,他存入的资产将全部转换为另一种的代币。由于用户只能存入一种代币,范围订单只能实现传统限价订单中四分之二的订单。另一方面,买入止损订单和止损订单无法实现。截至目前,我们不知道限制范围订单代币类型的目的是什么。

范围订单

Range?Orders

本质上并不是真正的订单,而是LP向资金池某个特定价格点提供的聚合流动性。虽然不是真正的订单,但「范围订单」所表现出的特性,却很好地模拟了限价单的基本功能。

https://docs.uniswap.org/protocol/concepts/V3-overview/range-orders

优点:UniswapV3引入了流动性分布的概念,允许其用户在价格范围内存入流动性。通过集中流动性,提高资本效率。当存入相同价值的资产时,可以获得更高的流动性和更低的滑点。在某个价格范围内提供流动性也在某种程度上降低了无常损失的风险。

缺点:用户在进行范围订单时只能存入某些类型的代币。因此无法实现买入止损订单和止损订单。

UniswapV2和V3在其AMM算法中引入了CPMM和流动性分布。提供价格范围内的流动性本质上使UniswapV3成为一个通用的AMM,能够通过改变其流动性分布成为任何可能的AMM。

Balancer的做市函数和交易公式:

Balancer?将UniswapV2的双代币池扩展到多代币池。Balancer池中每种资产的价值都持有一个不变的权重,加起来为1。不难证明,这相当于每种资产的储备数量的幂乘积是一个常数。资产n相对于资产t的价格也可以导出为资产t和n的储备数量之间的比率,通过它们的权重进行归一化。

Balancer?

Anon-custodialportfoliomanager,liquidityprovider,andpricesensor

https://balancer.fi/whitepaper.pdf

基于常数不变式,我们可以求导出有不同输入值的交易公式。在这种记法标准中,资产o始终是买出的资产。资产i是卖出的资产。A和B是打入/接收的代币和当前的代币储备数量。我们还可以根据价格的变化计算打入的代币或买出的代币数量。

智能订单路由算法:

Balancer还引入了智能订单路由(SOR?)算法。

SOR?

SmartOrderRouterV2

https://docs.balancer.fi/developers/smart-order-router

来源:https://docs.balancer.fi/v/v1/smart-contracts/sor/

该算法的总体思路是将一个订单分成几个小块在不同的Balancer池中进行交易,以获得更好的交易结果。假设我们要在代币池1和代币池2进行交易,如果我们要交易的总金额N低于上图中的A,我们将只在代币池1进行交易,因为代币池1的价格总是比代币池2价格好。如果总金额超过A,我们将部分订单在代币池1中交易,部分在代币池2中交易。在每个代币池中交易的数量将使每个池中的价格相等。

很容易证明最优策略总是使每个池中的价格相等的策略。

价格函数,相对于交易量,通常是一个非线性函数。Balancer将价格函数简化为线性函数。如果有n个代币池,最优策略可以表示为:

如果存在一个价格函数总是大于或小于范围(0,N)的其余价格函数,则应从上述计算中删除该价格函数和相应的池,以确保结果有效。如果价格函数总是较小,那么显然的最佳策略将是在该池中交换所有代币。

在这个计算中,不用考虑gas费用。实际上,最优策略应该是在路由收益和gas费用损失之间保持平衡。

SOR算法,我们相信可以在更广泛的背景下使用。例如,价格函数可以是其他AMM协议池的函数。由于我们目前知识的限制,我们不确定实际的AMM聚合器是否使用相同的逻辑来实现更好的价格。没有任何价格函数近似的更通用的解决方案将在本文后面讨论。

优点:Balancer将2个代币池推广到多个代币池,并引入SOR算法为其用户实现更好的价格。

缺点:“流动性池的强度取决于其最弱的资产。”一个池中的代币类型越多,风险就越高。

Balancer是一种多代币投资组合管理工具,允许灵活的代币价值分配,具有价格优化算法。

由于本论文过长,Curve的讨论及后续内容将于中篇和下篇公布。

原文链接:https://link.medium.com/ynEydZUihjb????

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金宝趣谈

[0:0ms0-6:859ms