智能合约安全审计入门篇 —— 抢跑_MET:METAKAT

背景概述

在上篇文章中我们了解了合约中隐藏的恶意代码,本次我们来了解一个非常常见的攻击手法——抢跑。

前置知识

提到抢跑,大家第一时间想到的一定是田径比赛,在田径运动中各个选手的体能素质几乎相同,起步越早的人得到第一名的概率越大。那么在以太坊中是如何抢跑的呢?

想了解抢跑攻击必须先了解以太坊的交易流程,我们通过下面这个发送交易的流程图来了解以太坊上一笔交易发出后经历的流程:

可以看到图中一笔交易从签名到被打包一共会经历7个阶段:

1.使用私钥对交易内容签名;

2.选择GasPrice;

3.发送签名后的交易;

4.交易在各个节点之间广播;

5.交易进入交易池;

6.矿工取出GasPrice高的交易;

7.矿工打包交易并出块。

交易送出之后会被丢进交易池里,等待被矿工打包。矿工从交易池中取出交易进行打包与出块。根据Eherscan?的数据,目前区块的Gas限制在3000万左右这是一个动态调整的值。若以一笔基础交易21,000Gas来计算,则目前一个以太坊区块可以容纳约1428笔交易。因此当交易池里的交易量大时,会有许多交易没办法即时被打包而滞留在池子中等待。这里就衍生出了一个问题,交易池中有那么多笔交易,矿工先打包谁的交易呢?

矿工节点可以自行设置参数,不过大多数矿工都是按照手续费的多少排序。手续费高的会被优先打包出块,手续费低的则需要等前面手续费高的交易全部被打包完才能被打包。当然进入交易池中的交易是源源不断的,不管交易进入交易池时间的先后,手续费高的永远会被优先打包,手续费过低的可能永远都不会被打包。

那么手续费是怎么来的呢?

我们先看以太坊手续费计算公式:

zkSync发布新的支持智能合约验证的插件:金色财经报道,基于ZK Rollup的以太坊二层网络zkSync宣布发布了一个新的支持智能合约验证的插件。hardhat-zksync-verify插件允许开发人员从终端和编程方式验证部署在 zkSync 2.0 上的智能合约。[2023/1/4 9:50:49]

TxFee=GasUsed*?GasPrice

其中GasUsed是由系统计算得出的,GasPrice是可以自定义的,所以最终手续费的多少取决于GasPrice设置的多少。

举个例子:

例如GasPrice设置为10GWEI,GasUsed?为21,000。因此,根据手续费计算公式可以算出手续费为:

10GWEI*21,000=0.00021Ether

在合约中我们常见到Call函数会设置GasLimit,下面我们来看看它是什么东西:

GasLimit可以从字面意思理解,就是Gas限制的意思,设置它是为了表示你愿意花多少数量的Gas在这笔交易上。当交易涉及复杂的合约交互时,不太确定实际的GasUsed,可以设置GasLimit,被打包时只会收取实际GasUsed作为手续费,多给的Gas会退返回来,当然如果实际操作中GasUsed>GasLimit就会发生Outofgas,造成交易回滚。

当然,在实际交易中选择一个合适的GasPrice也是有讲究的,我们可以在ETHGASSTATION上看到实时的GasPrice对应的打包速度:

由上图可见,当前最快的打包速度对应的GasPrice为2,我们只需要在发送交易时将GasPrice设置为>=2的值就可以被尽快打包。

好了,到这里相信大家已经可以大致猜出抢跑的攻击方式了,就是在发送交易时将GasPrice调高从而被矿工优先打包。下面我们还是通过一个合约代码来带大家了解抢跑是如何完成攻击的。

PoS智能合约平台CasperLabs将于3月22日在Coinlist进行代币销售:据 CoinList 官方信息显示,PoS 智能合约平台 CasperLabs 将于 3 月 22 日在 CoinList 上进行代币销售,详细信息待定,注册已经生效。[2021/2/21 17:36:04]

合约示例

//?SPDX-License-Identifier:?MITpragmasolidity^0.8.17;contractFindThisHash{??bytes32publicconstanthash=????0x564ccaf7594d66b1eaaea24fe01f0585bf52ee70852af4eac0cc4b04711cd0e2;??constructor()payable{}??functionsolve(stringmemorysolution)public{????require(hash==keccak256(abi.encodePacked(solution)),"Incorrectanswer");????(boolsent,)=msg.sender.call{value:10ether}("");????require(sent,"FailedtosendEther");??}}

攻击分析

通过合约代码可以看到?FindThisHash?合约的部署者给出了一个哈希值,任何人都可以通过solve()?提交答案,只要solution的哈希值与部署者的哈希值相同就可以得到10个以太的奖励。我们这里排除部署者自己拿取奖励的可能。

我们还是请出老朋友Eve看看他是如何使用抢跑攻击拿走本该属于Bob的奖励的:

1.Alice使用10Ether部署FindThisHash合约;

2.Bob找到哈希值为目标哈希值的正确字符串;

3.Bob调用solve("Ethereum")并将Gas价格设置为15Gwei;

4.Eve正在监控交易池,等待有人提交正确的答案;

智能合约漏洞赏金平台Immunefi为88mph提供4.2万美元赏金:智能合约漏洞赏金平台Immunefi宣布接入DeFi固定利率生成协议88mph(MPH),经评估后为88mph提供42,069美元最高等级的漏洞奖金。[2021/2/2 18:42:26]

5.Eve看到Bob发送的交易,设置比Bob更高的GasPrice,调用solve("Ethereum");

6.Eve的交易先于Bob的交易被矿工打包;

7.Eve赢得了10个以太币的奖励。

这里Eve的一系列操作就是标准的抢跑攻击,我们这里就可以给以太坊中的抢跑下一个定义:抢跑就是通过设置更高的GasPrice来影响交易被打包的顺序,从而完成攻击。

那么这类攻击该如何避免呢?

修复建议

在编写合约时可以使用Commit-Reveal方案:

https://medium.com/swlh/exploring-commit-reveal-schemes-on-ethereum-c4ff5a777db8

SoliditybyExample中提供了下面这段修复代码,我们来看看它是否可以完美地防御抢跑攻击。

//SPDX-License-Identifier:MITpragmasolidity^0.8.17;import"github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.5/contracts/utils/Strings.sol";contractSecuredFindThisHash{??//Structisusedtostorethecommitdetails??structCommit{????bytes32solutionHash;????uintcommitTime;????boolrevealed;??}??//Thehashthatisneededtobesolved??bytes32publichash=????0x564ccaf7594d66b1eaaea24fe01f0585bf52ee70852af4eac0cc4b04711cd0e2;??//Addressofthewinner??addresspublicwinner;??//Pricetoberewarded??uintpublicreward;??//Statusofgame??boolpublicended;??//Mappingtostorethecommitdetailswithaddress??mapping(address=>Commit)commits;??//Modifiertocheckifthegameisactive??modifiergameActive(){????require(!ended,"Alreadyended");????_;??}??constructor()payable{????reward=msg.value;??}??/*???Commitfunctiontostorethehashcalculatedusingkeccak256(addressinlowercase+solution+secret).???Userscanonlycommitonceandifthegameisactive.??*/??functioncommitSolution(bytes32_solutionHash)publicgameActive{????Commitstoragecommit=commits;????require(commit.commitTime==0,"Alreadycommitted");????commit.solutionHash=_solutionHash;????commit.commitTime=block.timestamp;????commit.revealed=false;??}??/*????Functiontogetthecommitdetails.Itreturnsatupleof(solutionHash,commitTime,revealStatus);?????UserscangetsolutiononlyifthegameisactiveandtheyhavecommittedasolutionHash??*/??functiongetMySolution()publicviewgameActivereturns(bytes32,uint,bool){????Commitstoragecommit=commits;????require(commit.commitTime!=0,"Notcommittedyet");????return(commit.solutionHash,commit.commitTime,commit.revealed);??}??/*????Functiontorevealthecommitandgetthereward.????UserscangetrevealsolutiononlyifthegameisactiveandtheyhavecommittedasolutionHashbeforethisblockandnotrevealedyet.????Itgeneratesankeccak256(msg.sender+solution+secret)andchecksitwiththepreviouslycommitedhash.?????Frontrunnerswillnotbeabletopassthischecksincethemsg.senderisdifferent.????Thentheactualsolutionischeckedusingkeccak256(solution),ifthesolutionmatches,thewinnerisdeclared,????thegameisendedandtherewardamountissenttothewinner.??*/??functionrevealSolution(????stringmemory_solution,????stringmemory_secret)publicgameActive{????Commitstoragecommit=commits;????require(commit.commitTime!=0,"Notcommittedyet");????require(commit.commitTime<block.timestamp,"Cannotrevealinthesameblock");????require(!commit.revealed,"Alreadycommitedandrevealed");????bytes32solutionHash=keccak256(??????abi.encodePacked(Strings.toHexString(msg.sender),_solution,_secret)????);????require(solutionHash==commit.solutionHash,"Hashdoesn'tmatch");????require(keccak256(abi.encodePacked(_solution))==hash,"Incorrectanswer");????winner=msg.sender;????ended=true;????(boolsent,)=payable(msg.sender).call{value:reward}("");????if(!sent){??????winner=address(0);??????ended=false;??????revert("Failedtosendether.");????}??}}

声音 | 黄连金:智能合约的安全将成为区块链应用大规模落地必须攻克的问题:美国计算机学会区块链与人工智能委员黄连金表示:目前区块链应用大规模落地的不多,基本上都是中小型规模落地,而这些落地的应用也出现很多安全方面的问题。而以后区块链应用若要大规模落地,对于安全方面的要求也会越来越高。其中智能合约的安全极为重要,智能合约为了价值的转移会锁定了很多的资产,而智能合约由于其去中心化的特性导致在运行之后很难进行升级或终止,这些特性导致智能合约在受到黑客攻击时很难及时止损。形式化证明是解决智能合约安全问题的一个办法,但只能解决智能合约部分的安全问题,无法解决智能合约所有的安全问题。[2019/1/28]

首先可以看到修复代码中使用了结构体Commit记录玩家提交的信息,其中:

commit.solutionHash=_solutionHash=keccak256

commit.commitTime=block.timestamp

commit.revealed=false

下面我们看这个合约是如何运作的:

1.Alice使用十个以太部署SecuredFindThisHash合约;

2.Bob找到哈希值为目标哈希值的正确字符串;

3.Bob计算solutionHash=keccak256(Bob’sAddress+“Ethereum”+Bob’ssecret);

4.Bob调用commitSolution(_solutionHash),提交刚刚算出的solutionHash;

5.Bob在下个区块调用revealSolution("Ethereum",Bob'ssecret)函数,传入答案和自己设置的密码,领取奖励。

这里我们看下这个合约是如何避免抢跑的,首先在第四步的时候,Bob提交的是这三个值的哈希,所以没有人知道Bob提交的内容到底是什么。这一步还记录了提交的区块时间并且在第五步的revealSolution()?中就先检查了区块时间,这是为了防止在同一个区块开奖被抢跑,因为调用revealSolution()?时需要传入明文答案。最后使用Bob输入的答案和密码验证与之前提交的solutionHash哈希是否匹配,这一步是为了防止有人不走commitSolution()?直接去调用revealSolution()。验证成功后,检查答案是否正确,最后发放奖励。

动态 | 慢雾区:以太坊智能合约Fountain(FTN)现溢出漏洞:以太坊智能合约 Fountain(FTN) 出现溢出漏洞,攻击者通过调用 batchTransfers 函数进行溢出攻击,漏洞具体出现在合约代码 535 行的加法运算上,满足 canPay 函数校验后将巨额 token 转向收款人

0x8cE6ae7e954A5A95ff02161B83308955Ebc832Cf

据介绍,简书是 Fountain 的第一个,也是最重要的一个合作伙伴。[2018/12/27]

所以这个合约真的完美地防止了Eve抄答案吗?

Ofcoursenot!

咋回事呢?我们看到在revealSolution()?中仅限制了commit.commitTime<block.timestamp?,所以假设Bob在第一个区块提交了答案,在第二个区块立马调用revealSolution("Ethereum",Bob'ssecret)?并设置GasPrice=15Gwei?Eve,通过监控交易池拿到答案,拿到答案后他立即设置GasPrice=100Gwei,在第二个区块中调用commitSolution()?,提交答案并构造多笔高GasPrice的交易,将第二个区块填满,从而将Bob提交的交易挤到第三个区块中。在第三个区块中以100Gwei的GasPrice调用revealSolution("Ethereum",Eve'ssecret)?,得到奖励。

那么问题来了,如何才能有效地防止此类攻击呢?

很简单,只需要设置uint256revealSpan?值并在commitSolution()中检查?require(commit.commitTime+revealSpan>=block.timestamp,"Cannotcommitinthisblock");,这样就可以防止Eve抄答案的情况。但是在开奖的时候,还是无法防止提交过答案的人抢先领奖。

另外还有一点,本着代码严谨性,修复代码中的revealSolution()?函数执行完后并没有将commit.revealed?设为True,虽然这并不会影响什么,但是在编写代码的时候还是建议养成良好的编码习惯,执行完函数逻辑后将开关设置成正确的状态。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金宝趣谈

[0:0ms0-8:859ms