生成式AI工具对环境有什么影响?_人工智能:人工智能电影

尽管关于人工智能的危险性,包括错误信息和威胁人类工作被取代等问题仍然主导着讨论,但波士顿大学的一位教授正对另一个可能的副作用发出警告——生成式人工智能工具可能带来相当大的环境影响。

波士顿大学计算机科学副教授凯特·萨恩科在《The Conversation》的一篇文章中写道:“作为一名人工智能研究者,我经常担心构建人工智能模型的能源成本。”她指出,“人工智能越强大,所需能源就越多。”

尽管比特币和以太坊等区块链的能源消耗已经成为从Twitter到国会大厅的研究和争论的焦点,但人工智能的快速发展对地球的影响尚未得到同样的关注。

Meta推出AI生成式音乐工具AudioCraft:金色财经报道,Facebook和Instagram的母公司Meta推出了一套生成式人工智能模型,称为AudioCraft,目的是通过各种输入进行音乐创作。这套生成式人工智能工具包括MusicGen和AudioGen,它们通过基于文本的输入来创建新的音频,还有另一个名为EnCodec的工具,它可以用更少的音损生成更高质量的音乐。Meta在公告中提到,其MusicGen模型是用其拥有或专门许可的音乐进行训练的。此工具可与谷歌今年发布的类似工具MusicLM相媲美。[2023/8/4 16:19:02]

西雅图风投基金Pioneer Square Labs完成2000万美元募资,拟投资生成式AI市场:金色财经报道,西雅图风投基金Pioneer Square Labs宣布旗下创投工作室完成2000万美元募资,拟投资生成式AI市场,新资金将用于投资生成式AI市场。Pioneer Square Labs此前曾投资过加密行业,去年八月参投了去中心化通新平台Satellite约1050万美元的种子轮融资,但据其常务董事Greg Gottesman透露,最新募资可能不会用于加密货币或元宇宙市场投资,而是将专注于生成式AI领域,并称该技术可能会对未来每一项业务产生深远影响。[2023/5/19 15:13:40]

萨恩科教授旨在改变这种情况,但她在文章中承认,关于单个生成式人工智能查询的碳足迹数据有限。然而,她表示,研究结果显示,生成式人工智能查询的能源消耗比简单搜索引擎查询高出四到五倍。

“TGV 4 Plus Opportunity Fund”拟投资生成式 AI 技术:金色财经报道,新加坡风险投资公司 True Global Ventures(TGV)已将此前募集了 1.46 亿美元的 “TGV4 Plus Follow On Fund” 更名为 “TGV 4 Plus Opportunity Fund”。根据 TGV 合伙人 Kelly Choo 透露,这家 VC 一直收到来自家族办公室的大量投资需求,要求其投资范围不局限于 Web3,而是要拓展到生成式 AI 领域,Kelly Choo 认为生成式 AI 可以帮助公司利用自己的专有数据来形成更好的产品或服务。[2023/5/12 14:59:43]

根据2019年的一份报告,萨恩科教授提到一个名为BERT(Bidirectional Encoder Representations from Transformers)的生成式人工智能模型,拥有1.1亿个参数,训练该模型所消耗的能源相当于一人往返跨大陆的飞行,并使用图形处理单元(GPU)进行模型训练。

百度地图发布首次融入生成式AI的V18版本:4月3日消息,据《科创板日报》报道,百度地图下一代版本V18于今日发布,由文心交通大模型和生成式AI提供底层支撑,可面向实时交通实现刻画、感知、预测、调度的端到端优化。据悉,百度地图还上线了领航数字人叶悠悠,是基于多模态交互、3D数字人建模、自然语言处理和大模型等技术开发的数字人,将与车主实现拟人级语音交互。[2023/4/3 13:42:37]

在AI模型中,参数是从数据中学习得到的变量,用于指导模型的预测。模型中的参数越多,通常意味着模型的复杂性更高,因此需要更多的数据和计算资源。在训练过程中,参数会进行调整以最小化错误。

相比之下,萨恩科教授提到OpenAI的GPT-3模型拥有1750亿个参数,其消耗的能源相当于123辆汽油驱动的乘用车一年的能量消耗量,或大约1287兆瓦时的电力。同时,该模型产生了552吨二氧化碳。她还补充说,这个数字仅仅是在准备启动模型之前,没有任何消费者开始使用模型时的数据。

萨恩科教授说:“如果聊天机器人像搜索引擎一样流行,部署这些人工智能的能源成本可能会非常高。”她举例提到,微软在本月早些时候将ChatGPT加入其Bing网络浏览器。

事情变得更加复杂的是,越来越多的AI聊天机器人,如Perplexity AI和OpenAI广受欢迎的ChatGPT,正在发布移动应用程序。这使得它们更容易使用,并暴露给更广泛的用户群。

萨恩科教授指出,谷歌进行的一项研究发现,使用更高效的模型架构和处理器,以及更环保的数据中心,可以大幅减少碳足迹。

萨恩科写道:“单个大型AI模型不会毁坏环境,但如果成千上万家公司为不同目的开发略有不同的AI机器人,并且每个机器人都被数百万客户使用,那么能源消耗可能成为一个问题。”

最后,萨恩科得出结论,需要进行更多研究,以使生成式人工智能更加高效,但她对此持乐观态度。

她写道:“好消息是,AI可以运行在可再生能源上。通过将计算放在可再生能源更丰富的地方,或者安排在可再生能源更充足的时间进行计算,与使用主要由化石燃料主导的电网相比,可以将排放量减少30到40倍。”

元宇宙之心

企业专栏

阅读更多

金色早8点

金色财经 子木

欧科云链

比推BitpushNews

-R3PO

深潮TechFlow

MarsBit

Biteye

肖飒lawyer

PANews

Odaily星球日报

Foresight News

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金宝趣谈

[0:0ms0-7:606ms