光谱仪是一种光学仪器,其在基础研究、生物传感器、食品安全、药品检测、环境监测等领域应用较广。
以生物检测为例,通过光谱仪能比较包括病在内的分子,对早期癌症的检测和治疗十分重要。在成像方面,通过光谱仪可测出波长信息,是光学领域中非常重要的参数之一。
目前,随着技术的发展,尽管商用光谱仪的体积已经比早期缩小很多,但总体的体积仍然较大。主要原因在于光谱仪中的色散元件等关键器件的体积比较大,再加上集成很多其他器件,导致光谱仪的整体体积庞大,其昂贵的成本也一直无法突破。
很多国内外课题组致力于发展光谱仪的微型化,但不可忽视的是,在光谱仪有限的体积内很难将整个系统很好地集成。
图丨英国赫瑞瓦特大学陈献忠副教授与课题组成员
近期,英国赫瑞瓦特大学与华北电力大学等团队合作,开发了一种新型超表面光谱仪,不仅实现了传统光谱仪的功能,还通过制备多焦点超透镜,能够调控不同波长光束色散。通过该光谱仪实现了尺度为300微米、带宽为180纳米的可见光范围中,精度可达到纳米级别。
由于超表面的二维纳米结构的超平、超薄的特点,使得这种超表面光谱仪的体积可被制备得很小,仅为几百微米,系迄今世界上体积最小的光谱仪。该研究拓宽了片上光谱仪、信息安全、信息处理等领域的研究思路。
声音 | Heriot-Watt大学科学家:区块链技术在能源领域具有巨大潜力:据Coin Crypto Rama消息,在《可再生和可持续能源评论》中,苏格兰Heriot-Watt大学科学家称区块链技术在能源领域具有巨大潜力。该大学副教授Valentin Robu表示:“在能源应用中,区块链通常与人工智能(AI)技术相结合,如多智能体系统和机器学习,这些技术可以实现智能微合同和本地能源交换。”这有助于建筑系统和能源服务提供商识别消费者能源模式,并可根据消费者个人需求开发适合的产品。研究助理Merlinda Andoni补充说:“区块链可能被用于智能设备的自动化和安全通信,这将进一步促进智能电网应用和能源行业的脱碳化。”[2018/12/12]
审稿人对该研究评价称,作者把超透镜的固有色散和多焦点特性结合起来,使波长信息通过焦点处的强度信息体现出来,这个想法非常巧妙。不同波长的光被聚焦在设计好的焦点位置,通过测量焦点处的强度信息获取入射光谱的信息。
图丨相关论文
近日,相关论文以《紧凑型多焦点超透镜光谱仪》为题发表在Nature子刊Light:Science&Applications。
华北电力大学讲师王若星、英国赫瑞瓦特大学博士后研究员穆罕默德·安福南·安萨里为论文的共同第一作者,赫瑞瓦特大学副教授陈献忠为论文的通讯作者。
现场 | 麻省理工学院科学家:区块链让实现隐私性和扩展性成为可能:金色财经现场报道,今日在第二届世界数字资产峰会上,麻省理工学院社会技术系统研究中心的研究科学家Harry Halpin在题为\"区块链与金融科技:扩展支付网络\"的圆桌讨论上表示, 区块链技术以社会激励等方式,让实现隐私性和扩展性成为可能。在加密技术出现之前,如果说要成立一个项目做隐私保护是很难融到资的,因为解决方案是中心化的,而目前技术让这种想法成为现实,这是让人引以为傲的。[2018/12/12]
将波长信息与透镜汇聚完美融合
在该研究之前,陈献忠课题组开展了一种三维偏振结构的研究,相关论文发表在NanoLetters。
由于连续焦线上每一点的线偏振方向都不同,如果用传统的光学元件来做,不仅系统会非常庞大、成本高,而且由于器件较多其精度也很难达到实际使用的要求。该团队通过非常简单的办法,首次将三维的偏振结构制备出来,并能够实现对波长信息的操控。
从2011年开始,陈献忠就开始从事超表面、超透镜方向的研究。在研究开始之前,一个疑问在他脑中思考了很久——怎么把波长信息和透镜的汇聚结合在一起?带着这个问题,他与课题组成员开始了本次的新研究。
现场 | 卡内基梅隆大学著名科学家Peter Chen:智能合约需要在四个方面做出改进:据CoinTime现场报道,美西时间9月13日,在圣何塞举办的Blockworld 2018区块链开发者及技术峰会上,卡内基梅隆大学著名科学家Peter Chen指出,相比传统合约,智能合约具有执行自动、时间快,无需第三方,无需实体签名,无需纸质文本,成本较低等特点,因此更加安全,成本更低廉。但从另一个角度来讲,其不可篡改性也将会影响其性能;没有守门人导致有可能出现与其他程序出现不良交互现象;没有实现与现实世界法律互动;也因证明“程序正确”的难题以及可能发生的不良影响带来的安全问题。智能合约有以下方面得到改进,如:解决复杂问题、在某些场景下引入守门人、确定谁以及怎样做最后决定,提高之行合约的性能。Peter Chen也指出,不要过度吹嘘智能合约,真正的“智能”来自社区。[2018/9/14]
图丨基于多焦点超透镜的超表面光谱仪
该研究起源于2019年。彼时,在哈尔滨工业大学李立教授课题组的博士研究生王若星到赫瑞瓦特大学做访问学者。该研究的想法由陈献忠和王若星共同提出,并由王若星负责设计、计算等方面的工作;由安萨里负责样品的加工及样品测试等。
值得关注的是,超表面光谱仪的设计原理与传统的光谱仪不同。透镜作为最基本的光学器件,该团队使用基于纳米结构的超表面来制备透镜,并可作为光谱仪使用,为相关领域拓宽了研究思路。
Penta公链首席科学家&联合创始人Steve Melnikoff:区块链技术在解决大规模系统工程和集成挑战方向潜力巨大:2018全球无眠区块链领袖峰会暨中国国际区块链产品与设备展上,Penta 公链(PNT)首席科学家&联合创始人Steve Melnikoff博士受邀出席并带来在中国的首次发声——“利用区块链技术解决大规模系统工程和集成挑战”的主题演讲。演讲中,Steve博士认为区块链在应对规模巨大、范围巨广、复杂性巨高、周期巨长的“超级”项目时具有令人难以置信的潜力,大规模的使用也有利于区块链最终落地,并以“美国汉福德核废料清理计划”、 “北京大兴国际机场建设”以及“NASA火星探索任务和载人探险计划”三个最具代表性的“超级”项目说明了区块链在数据留存、回溯等方面的能力。他也指出,“对于组织和政府应对国家或全球性大规模挑战,区块链都是正确的技术,现在也是‘万能区块链连接器’的最好时机。这与Penta要做区块链世界的连接器,打造下一代普惠、兼容、安全的公链的目标一致。”[2018/6/6]
陈献忠指出,“该光谱仪体积非常小,有利于集成于器件,使我们可以在很小的空间内可实现系统的、强大的功能。”
图丨超表面光谱仪的设计、制造和表征
该研究中最关键的挑战在于,如何在同一器件中将不同波长分开?
HIFIVE.AI首席科学家尹学渊:区块链确保了音乐人的版税收入:4月25日,中国音乐大数据研究院启动仪式在北京举行。HIFIVE.AI首席科学家尹学渊会上表示,借助区块链技术,HIFIVE.AI可以实现数字版权的注册、识别、追踪和确权,精准定位音乐作品的所有权信息,确保音乐人在每个环节都能得到相应的版税收入。同时, 版权分发过程中透明性增加,音乐人只需在区块链上直接发布自己的作品,就可以提高实际收益,保障自己的权益。[2018/4/26]
实际上,在这个问题上,该团队在走了很多“弯路”、做了大量尝试都未成功。一次无意间他们发现,此前课题组的NanoLetters研究或许可为该挑战提供帮助。于是,他们将波长信息引引入到超表面光谱仪的设计中,解决了波长分离的难题。
超表面光谱仪的成本有望降到几十元
以市场中OceanOptics光谱仪为例,其价格为几千英镑。而通过新研究中的技术,会给光谱仪的成本带来怎样的影响呢?
陈献忠表示:“目前我们的纳米加工成本大概在3000-5000元,如果用工业化手段有望将成本降低至几十元。未来,如果批量生产,由于超表面和现有的纳米加工工艺兼容,价格将会更低。”据悉,该团队已与英国STMicroelectronics等公司开展相关的产业化合作。
图丨在多色光束下,带有12个焦点的超表面光谱仪。
目前,超表面光谱仪样品的尺寸在300*300微米,其分辨率能达到纳米级别。下一步,该团队计划将器件放大至毫米级别,将光谱仪的精度进一步提升,使其测量的光谱范围更宽。
此外,目前用电子束制备的基于金属纳米结构的超表面效率在8%的可见光范围内。未来,如果将光谱仪向商业化发展,也可用介质材料代替金属纳米结构,以提升效率。
陈献忠表示:“我们还计划将光谱信息拓宽到边界领域。把光谱仪和光的偏振信息融合在一起。做一些多光谱的偏振结构,甚至把它拓宽到涡旋光束领域。如果将信息量提升到一定程度,就会有更多的设计自由度和更多的载体。”
通过这次的新研究,研究团队发现可将光谱的不同颜色的光分开。因此,未来可以将很多颜色的信息集成在同一偏振结构中。
例如,在成像方面,可将红光、绿光、蓝光等更多信息包含进来。并且,该课题组目前也在推进量子光学、光镊等更多学科交叉方向的相关合作课题。
因兴趣驱动选择科研方向,专注超表面领域10余年
在陈献忠看来,做科研完全是兴趣驱动使然。他在中国科学院光电技术研究所获得博士学位,之后,来到英国的伯明翰大学做博士后研究。2007年,他在姜开春教授的指导下,参加了一个为期三年的欧盟项目,负责生物传感芯片的制备。2010年,他加入张霜教授课题组,做超材料方向的研究。
超材料通常需要三维的结构,但三维结构在可见光波段加工非常困难。超表面基于二维的结构,解决了加工的难题。2011年,他在张霜教授的指导下开展超表面方面的研究。
2012年与合作者在NatureCommunications发表论文,通过使用超表面设计了一种双极性透镜,可充当凸透镜或凹透镜。通过在玻璃上制造金纳米棒,这种新型透镜只需切换光源的圆偏振特性即可放大或缩小物体。
图丨双极性透镜示意图
在博士后研究期间,陈献忠与合作者还研发了一款使用天然方解石晶体制备的超材料斗篷,能实现毫米级的3D物体“隐身”。该研究被美国PhysicsWorld杂志评为“2010年十大突破”之一。
2013年,他加入赫瑞瓦特大学任教,并成立课题组。目前,课题组致力于平面光学的基础物理和超薄光学器件研究,并将其应用于成像、显示、偏振成像、三维偏振结构生成、涡旋光束调控、生物医学传感、量子纠缠和粒子捕获等。
“传统全息对偏振不太敏感,而我们做的全息片非常有趣,不仅对偏振异常敏感,还会产生不同的图像。”他表示。
最近,陈献忠还与团队研究了一种偏振成像方法,包含了很多那些人类的眼睛、探测器等对其不敏感,但却十分有用的关键信息。他举例说道:“在癌症研究中,对于癌细胞和正常细胞,光的偏振有不一样的响应特性。通过偏振信息的检测,可以在得到这些信息后,确定人体中精准的癌变位置。”
在成像方面,他和团队致力于通过边缘成像提升识别的效率。传统的方法需要计算能量、消耗能源,并且速度较慢。“与AI、GPS相比,人眼看东西需要非常多的细节才能进行识别,但是机器只通过轮廓就可以。”他说。
陈献忠坦言,其课题组的研究成果和跨学科交流密不可分,他经常在遇到技术难题时,与其他领域的同事交流。“很多时候做科研要面对结果的未知数,科研工作者往往至关注所在领域的某个点,但通过交流可以碰撞出创新的灵感,更能将视野提升至全领域。”
参考资料:
https://physicsworld.com/a/physics-world-reveals-its-top-10-breakthroughs-for-2010/
1.R.Wang,M.A.Ansari,H.Ahmed,Y.Li,W.Cai,Y.Liu,S.Li,J.Liu,L.Li,andX.Chen,"Compactmulti-focimetalensspectrometer,"Light:Science&Applications12,103(2023).https://doi.org/10.1038/s41377-023-01148-9
2.R.Wang,Y.Intaravanne,S.Li,J.Han,S.Chen,J.Liu,S.Zhang,L.Li,andX.Chen,“MetalensforGeneratingaCustomizedVectorialFocalCurve”,NanoLetters,21,2081(2021).https://doi.org/10.1021/acs.nanolett.0c04775
3.X.Chen,L.Huang,H.Muhlenbernd,G.Li,B.Bai,Q.Tan,G.Jin,C.-W.Qiu,S.Zhang&T.Zentgraf,“Dual-polarityplasmonicmetalensforvisiblelight”,NatureCommunications3,1198(2012).https://doi.org/10.1038/ncomms2207
4.X.Chenetal.,“ReversibleThree-DimensionalFocusingofVisibleLightwithUltrathinPlasmonicFlatLens”.AdvancedOpticalMaterials1,517(2013).
https://doi.org/10.1002/adom.201300102
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。