好些量子力学的科普中,存在哪些误解?_莱特币:PLTC价格

北京时间10月4日下午,瑞典皇家科学院决定将2022年的诺贝尔物理学奖授予法国科学家AlainAspect、美国科学家JohnF.Clauser和奥地利科学家AntonZeilinger,以表彰他们“用纠缠光子进行的实验,建立了贝尔不等式的违反,并开创了量子信息科学”。

——量子力学中那些“奇特”的现象,其实在宏观世界中也一样存在

文/陈思进

之前,我曾在专栏文《量子力学并没有否定客观世界》中提及:不确定性原理听上去神奇,其实倒也并不神秘,它是某些成对出现的物理量,术语叫共轭物理量的逻辑必然。不确定性原理是普适的原理。不管在微观世界还是宏观世界,不确定性原理具有明确的数学法则,即质量越大和体积越大的物体,其不确定性就越小。所以,任何肉眼可见的物体,它的不确定性可小到完全可以忽略不计。

Coinbase Support:正在修复关于莱特币的发送、接受和提取问题:6月10日消息,Coinbase Support 在推特回复关于莱特币的发送、接受和提取问题,称目前正在努力修复。[2023/6/10 21:27:59]

文章发表之后,收到好些读者的询问,说他们看到的一些科普文章,都把量子力学描述得非常得“神奇”,甚至感觉“超自然”了。那我就再详谈一下吧。

最近,牛津大学量子信息学教授VlaskoVidral表示,“很少有现代物理学认同牛顿物理学可以和量子物理学相提并论,即便在日常生活的‘真实世界’中,也是如此。牛顿的理论只是一种近似,在任何尺度上世界都是量子的。”

也就是说,量子力学非但适合量子世界,也适合“真实世界”——我们可见的宏观世界。大多数人都以为量子的那些不可思议的特性,如叠加态、量子纠缠、不确定性原理等,只是量子世界的特性,在宏观世界中并不适用。其实这是一个误解。所有量子理论中的数学公式,都可以用在宏观世界之中;所有适用于微观粒子的概率计算,也都可以计算宏观物体。

莱特币MW协议集成四月开发进展:已构建测试框架 开始代码库集成:负责将MimbleWimble协议集成至莱特币的Grin开发者David Burkett已更新其四月开发进展,Burkett称其已经构建了一个测试框架并开始了代码库集成。Burkett还更新了Grin++的开发状况,该项目此前已发布v1.0.0候选版本,这也是该项目的首个非测试版本。(Cointelegraph)[2020/5/4]

举一个实例。如果我们将电子的位置测准到1毫米范围,那么它速度的不确定性将高达1米/秒;如果将原子的位置测准到约10的-10次方米这一范围的话,它的速度的不确定性,将高达1万米/秒。

但是,如果我们测量的是一个重1公斤的铅球,假如我们把它的飞行速度测量至小数点后24位这个精准度,即便在这个精准度之下,它的位置不确定性的范围,也不会超过一个原子的大小。

号称“比特币鲸鱼”的中国用户 用莱特币购买了四辆F1赛车:中国的一位“比特币鲸鱼”大佬同意从英国的Heritage F1经销商手中购买四辆总价值大约400万英镑的罕见F1赛车,根据标准检验,这次交易全部用莱特币支付。Heritage F1的创始人迈克·奥康纳(Mike O'Connor)表示:“用这种虚拟货币出售令人叹为观止的F1赛车将为我们开创一个新的先例,以及一个全新的国际市场。使用虚拟货币购买奢侈品的需求不断增加,我们相信这次合作的销售只是未来的第一个。“[2017/12/13]

再比如量子隧穿效应,质量越小,概率就越大。这个概率的数学计算,同样可以用来计算一个棒球打到墙上,有多少几率穿墙而过,只不过计算结果的概率可小到宇宙末日的到来,才有可能发生一次。

然而,注意到,在一些科普文章中,把不确定性定义为只存在于微观世界。这是一个误解。事实上,在真实的物理理论中,量子的不确定性原理,其实并不只适用于微观粒子,宏观物体也同样符合不确定性原理。而且可以定性地描述为一个公式,也就是:“一个物体的位置不确定性X它的速度不确定性<普朗克常数/物体的质量”。这是一个普世的公式,它表示物体的质量越小,那么不确定的范围就越大;反之,则越小。

BitMEX将在以太坊合并前1小时及期间暂停ETH、ERC-20、USDT的提取服务:据官方公告,在以太坊合并前1小时和合并期间,BitMEX将暂停ETH、ERC-20资产和USDT的提取,衍生品和现货交易所的交易将不受影响。此外,在合并完成后,以太坊和 ERC20 资产将保留其当前名称和ID。[2022/9/15 6:57:44]

换句话来说,不确定性原理是普世原理。只是体积越大,不确定就越小。于是,任何人眼可见的物体的不确定性,已小到可以忽略不计了。不过,归根到底,世界就是不确定的。

同时,叠加态也一样,物理学家李淼先生曾说过:“任何物体可以处于不同位置的叠加态中”。不过,为何在宏观经典世界中,迄今为止,似乎并没有发现像人体、猫等也具有叠加态呢?这也恰恰是量子力学最大的特点,即,一旦一个系统足够大,那么它的表现至少“看”上去,与经典物理系统就一样了。

比如,著名的“薛定谔的猫”,尽管从量子力学的理论去观察,这个“猫”可以同时处于生和死的叠加态。但是,由于“猫”太“大”了,“猫”通过呼吸和空气发生了作用,即“猫”和外界接触了。因此,波函数早就坍缩了,即“猫”肯定会要么生,要么死,不会同时处于生和死的叠加态。

20世纪初,由于相对论和量子力学的出现,人们普遍认为机械宇宙观已经破产,甚至认为相对论和量子力学“推翻了”牛顿力学。

其实不然。

众所周知,量子力学的发展是从因应19世纪末物理学上空的二朵乌云中的“黑体辐射”问题开始的;而反映经典物理学中的另一基础性矛盾——另一朵乌云“以太漂移”,则被爱因斯坦的狭义相对论和广义相对论所诠释,揭示了空间、时间、物质和运动之间的内在联系,带来了整个物理学和人类认知领域的革命。

我还注意到,在很多科普相对论的文章中,也常有个误解,就是说相对论只适合高速、大质量物体。而相对论在低速、小质量物体时,也是对的。就像在宏观世界观察不到量子现象一样,相对论在低速、小质量物体时,也只是不明显而已。

其实,爱因斯坦是在洛伦兹变换的基础上,建立起来的一种新的时空观,后来被称为“相对论时空观”。在爱因斯坦新的时空观里,原有的力学定律都需要被修正,而牛顿定律不过是低速度空间里的特例。

这就是为何亚里士多德的落体理论和托勒密的地心说早已成为历史,而牛顿力学至今仍然是全世界所有物理学的基础教程的原因所在,并且依然是现实生活中使用最广泛的物理学知识。

显然,不仅相对论和量子力学绝对没有推翻牛顿力学,而且它们是以全新的方式,更精确和更清晰地再次证明了牛顿力学的科学性,因为,低速空间是我们的常态。

最后,用李淼先生的一句话作为此文的结语:“量子力学的世界是一个神奇的世界。这个世界再神奇,也不会神奇到没有意识就不存在。它只是告诉我们,一个粒子可以处于不同位置的叠加态中,甚至任何物体都可以处于不同位置的叠加态中。”

2022年10月05日写于多伦多安大略湖畔

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金宝趣谈

[0:15ms0-4:761ms