一切技术创新史都是数据史_区块链:GEN

文/李根ligen@qbitai.com量子位出品|公众号QbitAI

你可曾想过这样一个问题:

如果以技术创新、科技发展而论,我们当前正处在一个怎样的周期?

有按照热门技术领域的定义,比如这是一个AI、5G和区块链等交叉交融的时代。

也有按照应用产业的不同,划分为消费互联网和产业互联网等大板块。

还有根据物理介质的差异,把线上的一切视为电子驱动的虚拟世界,把原子为单位的空间成为现实世界,然后二者交错,虚实相生,给出数字孪生的叫法,也有Metaverse元宇宙的判断。

然而林林总总的归结,大体都只是对现象的描述,也缺乏一以贯之的本质抽象。

解释过往之事时各执三观,预测未来之事时缺乏主线。

有没有一条隐隐的规律?

可以大道至简地解释过去、现在和未来。

有——如果从数据的维度,一切技术创新、科技发展就能得到解释和预测。

过去和现在我们经历的技术创新,一面驱动力来自数据的体量,另一面则源自数据的高效运用。甚至面向未来,这两大作用力也在对“下一代创新”给出答案。

一切技术创新史都是数据史。

一切科技发展史,皆可作数据观。

拜登:通胀正在下降,一切都在朝着正确的方向发展:金色财经报道,美国总统拜登表示,通胀正在下降,一切都在朝着正确的方向发展。物价仍然太高,还有很多工作要做。工资上涨的幅度超过了物价上涨的幅度。希望物价在2023年底前接近正常水平,但不应该上涨。[2022/12/14 21:42:21]

技术创新简史

在以史为鉴的总结判断中,一张技术周期和应用机遇的趋势图被反复讲起。

制图样式各种各样,但呈现的结果大同小异。

以线性时间为轴,以当时主要技术或公司为成果:

门户时代→搜索时代→社交时代→电商时代→本地生活服务……

另一种类似的归纳是:

互联网→移动互联网→AI……

但很多案例在这种线性归纳中难以得到解释。

比如门户代表新浪搜狐、社交代表腾讯、电商代表阿里巴巴,搜索代表百度……基本不存在明显的创办周期。

而且也很难解释,门户时代消亡已成共识后,今日头条为代表的内容聚合应用又算什么?人人网开心网作为社交时代明星陨落后,微博微信陌陌算不算社交赛道?阿里京东提供的电商服务已如此丰富,电商领域依然有拼多多这样的大树长成。

另外,百度究竟是一家互联网公司?还是AI公司?

被问及7月加息100个基点的可能性时,美联储博斯蒂克:一切都有可能:7月14日消息,当被问及7月加息100个基点的可能性时,美联储博斯蒂克表示,一切都有可能。(金十)[2022/7/14 2:11:23]

字节跳动又该划在移动互联网?还是AI?

还有以硬件交互终端作出的时代划分:

电脑PC→手机→AIoT\可穿戴\AR\VR\MR……

特别是在下一代终端的预测中,这样的逻辑被演绎得最充分。

但如果严格对照来看,承接在PC之后的实际是“智能手机”,手机和电脑其实都是一个时代大背景的同一批终端。

以及PC、智能手机之后,究竟能给下一代交互终端给出怎样的趋势预测呢?

越来越小型、越来越便携?

那现在XR领域上的各类产品,看起来都不尽符合。

时下风口之上的智能车,又该如何判断归属?

所以结论种种,最终指向——线性时间上的归纳可能并不本质。

而概括过去本身就已经如此困难重重、逻辑挑战一个接一个,遑论能给未来或趋势提供有说服力的参考。

马云:制造业和服务业都离不开金融业的发展,这一切的核心要靠区块链等技术:9月15日,2020线上智博会于重庆开幕。在开幕式暨大数据智能化高峰会上,马云发表了视频演讲。马云表示,因为数字技术,未来制造业有很多岗位肯定会被机器所取代。将来创造就业的主要不是制造业,而是数字经济的服务业。无论制造业还是服务业都离不开金融业的发展,新金融体系是让钱去找企业、找好企业,而做到这一切的核心是要靠智能、靠大数据、靠云计算和区块链。(重庆发布)[2020/9/15]

比如下一个时代,究竟是5G\6G的时代?AI机器人的时代?区块链的时代?新材料的时代?还是生物计算的时代?

又或者这些被视为下一代技术创新的方向,是否有一条共同的主线。

一条打通过去、现在和未来的技术创新中轴线。

一切技术创新史都是数据史

数据就是这条中轴线。

无论门户、搜索、社交、电商……还是互联网、移动互联网,抑或PC、手机等等各式各样的划分,都只是这条中轴线上的开花结果。

并且决定了这种开花结果的先后次序。

同一个时期内,技术创新的落地,总是围绕着数据规模、质量,处理效率来分先后的。

英国央行行长贝利:英国央行准备好采取一切必要行动:英国央行行长贝利:英国央行准备好采取一切必要行动。英国央行采取的行动并非是货币融资。(金十)[2020/4/6]

这也就能解释,为什么门户、社交、电商和搜索等不同应用,几乎差不多同时开创,但会是门户率先登上互联网铁王座。

在互联网应用的初期,在同样的在线化进程里,门户面前的数据规模、质量都要高得多得多。

而多年后,之所以门户赛道上又长出今日头条为代表的应用,是因为数据处理的功劳。

门户改变了数据存储方式,却在分析处理上败给了今日头条。

但是,没有智能手机——新一代数据传感器,也就难有今日头条。

电脑PC到智能手机的时代跃迁,终端大小、便携性只是表象,更具本质决定因素,依然是数据。

智能手机是比电脑更强大的数据收集器,并且在后来在分析处理数据的计算能力上也实现了超越。

同是“数据传感器”,手机拥有更加随时随地的数据输入能力,而且提供的标签、结构化维度更加细致——PC显然不具这种能力。

也正是智能手机作为数据传感器的普及,才让深度学习为核心的AI浪潮在2010年之后复兴。

因为正是越来越多图像数据,才让深度学习巨头们的算法有了演武场,在冷板凳几十年后在大数据集ImageNet上让所有人看见潜力和光芒。

声音 | 亦来云官方:DoS漏洞9月已修复 主网一切正常:今日,DVP漏洞平台称此前收到来自社区白帽子的关于亦来云远程DoS高危漏洞的反馈,攻击者可借此漏洞远程攻击亦来云节点,并最终导致主网瘫痪。

对此,亦来云官方回应称:该DoS漏洞只是针对RPC接口,不会造成主网瘫痪。该漏洞在DVP发布给团队后已经立即被修复。目前,团队已经完成自检,亦来云主网一切正常。感谢DVP,也欢迎社区成员积极参与安全检查。[2018/12/7]

而沿着这条主线,下一个交互终端,实际也就能更本质锁定:

是否有更强的数据传感能力?是否有更多维、精准的结构化数据能力?AIoT\可穿戴\AR\VR\MR……这些备选项里也就有了解题方法。

甚至进一步延伸向一些垂直领域,比如汽车,百年未有之大变革,还只是动力方式的变革吗?

前进方向:数据大的快于数据少的,结构化的优于非结构化的,高频产生的要强于低频的。

痛点方向:一方面指向数据的计算力,另一方面则指向数据的可信可用——特别是进入到隐私和敏感数据领域。

前者当前技术创新代表是AI和5G,可以在整个数据的传感、存储、分析的流程中发挥作用,更直白讲是把数据用起来。

后者则以区块链为代表,能解决数据可信、隐私保护等方面的挑战。

这也就解释了,为什么两大新技术创新潮流,会在此时交融交汇。

并且隐隐有基础设施之势。AI被视为生产力,区块链则被视为生产关系。

数据史观下的AI和区块链

AI与数据的关系,过去几年里已经被多音复义,人人皆知其原理。

但区块链,可能由于加密货币的争议,被忽视了基础技术价值和基建意义。

本质上,区块链是一种分布式网络技术方法。

在算法更好、算力更强,数据大爆炸的情况下,提供的一种对数据真伪、价值判断的能力,甚至还是基于隐私前提下的数据使用。

这也是区块链应用,正在从单点走向多点,从一个领域走向更多领域的内在原因。

然而从2020年蚂蚁链升级、进入更多产业开始,这项技术算是真正迎来正名阶段。

区块链能做什么?

对义乌外贸商家而言,是账期的大大缩短。

之前水晶商品要运到墨西哥后才能收到货款,现在从发货数据被认定的那一刻,对方货款就会入账。

是账期从2个月到次日到账的变化。

区块链能做什么?

对安徽砀山卖梨农户来说,是网购产品从线下到线上的盖章认定。源头可溯的好产品,过程中也不能被篡改。

是好产品有好价格、形成好品牌,并且一切可持续的变化。

区块链还能做什么?

对文创IP版权产业而言,是化整为零时代的开启。过去版权都是成套成规模授权售卖。对于大版权公司而言,IP零授成本太高;对于中小商家而言,成套成规模版权买不起。

但如果能化整为零,一个IP版权哪怕只商用一次也可快速交易,就会皆大欢喜。

于是趋势已然很清晰,只有数据所有权问题、隐私问题得到保障,数据才能加速成为生产资料。

而区块链,不就为此而生的吗?

所以大道至简,万佛归宗。技术创新发展史,本质就是数据不断输入到输出的历史。输出到输出的数据流动过程,形成了所谓的网络。

现如今,芯片为底层的计算单元带来更强的算力;AI提供更好的算法;而网络可信、数据可用的方案,则供应于区块链。

从数据史观的维度看,它们构成了技术创新的三大基础设施,以三大作用力交融交汇,驱动各行各业数字化、智能化进程的加速。

现状上,这三大作用力处于不同产业阶段:芯片算力已是成熟期,AI进入落地期,区块链则刚刚迈入产业探索期。

意义和价值上,他们缺一不可。眼前挑战而言,刚进入产业探索期的区块链,成为矛盾的主要方面。

区块链的加速度,决定了芯片和AI作用力的整体速度。

值得注意的是,春江水暖鸭先知,这种加速度,在开发者层面开始得到共振,并且由于蚂蚁链在区块链技术上的原创和先发性,这层关系技术创新的基础设施和生态的自主权,现在正在中国加速。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金宝趣谈

[0:46ms0-4:342ms