发布方:XBITRUST&PaiclubCapital作者:苏文杰我们根据多个交易所的限价指令薄数据构建了一种比特币市场整体情况指标,借此来揭示市场整体深度情况,并采用贝叶斯统计来推断支撑位和阻力位的位置。交易所的选择参考了BitMEX指数和Deribit的BTC-USD指数获取数据源,采用了Binance、Bitstamp、Bittrex、CoinbasePro、Gemini、Huobi、Kraken和OKEx交易所的比特币现货数据,并将其挂单量的单位统一为美元,以便比较。一、聚合后的限价指令薄下图为2021.2.118:03左右时,各交易所聚合后的高于1万美元的挂单情况:
图1高于1万美元的挂单情况由上图可知,此刻Kraken和CoinbasePro的买价高于Binance、Huobi和OKEx的卖价。实际上,有时部分交易所的买价高于其他交易所的卖价的程度较大,这便提供了一定的套利机会。
图2高于50万美元的挂单情况上图展示了比特币现货市场高于50万美元的挂单情况,不同价位的挂单量是由各个交易所的数据聚合而来的。例如,34700卖价上有价值83万美元的比特币出售,这是由OKEx、Kraken和Binance这3家交易所的挂单所组成的。
波卡周报:PolkadotDecoded开放社区投票,QuarksLab发布XCMv2审计报告:4月4日消息,根据PolkaWorld发布的波卡周报,PolkadotDecoded已经开放社区的投票。
4月1日凌晨2:00左右,Polkadot网络第13次平行链插槽Auction结束。Phala以锁定610,759 DOT赢得Polkadot第13次平行链插槽Auction,并立马接入Polkadot中继链,以启动其主网。
预计第14次插槽Auction将在4月6日凌晨3:27启动。目前活跃的Crowdloan有Unique Network。尽管Unique Network的Crowdloan目前收集的DOT最多,但他们竞拍的是8-15租期,而不是当前7-14租期。
QuarksLab发布了一份XCMv2审计报告,对XCM、VM和XCM工作原理做了很好的概述。
Polkadot的56号公投正在进行中,该议案旨在通过paras.forceSetCurrentCode解除Composable平行链,目前正在一致通过中。
Polkadot理事会投票通过Motion 179,该议案旨在通过国库资助波卡生态研究院的运营。
Turing Network赢得Kusama第30次插槽Auction。
Kusama理事会投票通过Motion 449,该议案旨在通过NFT奖励来激励社区参与网络治理。[2022/4/4 14:02:39]
图3高于200万美元的挂单情况上图只选择显示高于200万美元的挂单,可见在33500美元至38500美元之间各有一些大额挂单,其金额大致相当,若进一步分析这些挂单的分布情况,我们还能得出更多的结论。
波卡周报:Kusama首批插槽获胜者Karura、Moonriver、KILT成功续租48周:3月27日消息,根据PolkaWorld发布的波卡周报,Parity发布Polkadot v0.9.18版本,该版本的优先级较低。
Equilibrium赢得Polkadot第12次插槽Auction,并立马接入了Polkadot中继链。
Polkadot的第13次插槽Auction已经在3月25日凌晨2点开始,目前正在进行蜡烛期,领先出价的是Phala Network。
Acala携手9个平行链项目和顶级风投发起2.5亿美元的“aUSD生态基金”,旨在支持Polkadot或Kusama生态系统中可以使用aUSD的早期项目。
Polkadot理事会投票通过了Motion 172,该议案将提供资金为Polkadot大使制作3D NFT徽章。
Karura宣布自己是ID为2003的赢得Kusama第29次插槽Auction的获胜者。
截止发文,Kusama的第一批插槽获胜者Karura(ID2003)、Moonriver(ID2112)、KILT(ID2108)都已经成功续租了48周的使用时间。
Kusama第30次插槽Auction将于3月28日凌晨0:30左右结束,截止发文Turing Network领先整个蜡烛期。
Kusama理事会投票通过了Motion 449,该议案旨在资助一个通过NFT奖励来激励社区参与治理的项目。[2022/3/27 14:20:40]
波卡周报:Polkadot 0.9.2已发布 等待平行链Shell升级为Statemine:据波卡周报,Polkadot 0.9.2 已发布,等待平行链Shell升级为Statemine。1.Polkadot 国库今天刚刚销毁掉了147,042个DOT,目前还有1461万个DOT等待大家去申请。2.Shell 平行链正在 Kusama 网络上运行。3.Kusama 第 108 号公投(强制恢复一个账户)没有被通过。4.Encounter 是一个独特的身份系统,正在申请成为 Kusama 的公益链。5.Kusama 理事会已经通过并执行了 Motion 295,它消除了由于 CPU 峰值导致不允许在 9010 Runtime 升级期间发送 imOnline 消息而导致的 115 个验证器的 slash 惩罚。6.Kusama 理事正投票 297 motion,以资助将 Kusama 集成到 Klever 钱包中。7.Kusama 国库目前有 345,211 KSM,有 690.42 KSM 会在一天后销毁掉。[2021/5/23 22:35:12]
图4高于500万美元的挂单情况上图只选择显示高于500万美元的挂单。有意思的是,有部分报价大幅偏离当前价格的卖单长期存在于某些交易所中,而这样的挂单一般不纳入到我们的分析之中。
图5市场整体多空力量对比上图给出了不同价格区间下,市场整体多空力量对比情况。由此可知,此刻买方的大额挂单总量略大于卖方,不过这样的结论作为指标值也只适合在震荡行情中进行选用。二、贝叶斯统计在比特币支撑位和阻力位判定中的应用在交易中,人们一般基于经验来判断某个价位是否是支撑位或阻力位。在限价指令薄中看见各价位的挂单量时,很自然地就瞬间对比出哪些价位的挂单量大于其他价位,且数值有明显的不同之处,属于支撑位或阻力位。人脑对此的判断迅速准确,但要问起判断依据,其回答通常是“感觉到是这样”,然后就得出了正确结论。若对此进行一番分析,我们可以指出做出这样的判断至少经历了以下4个步骤:人脑对以往的支撑位/阻力位的挂单量有印象,能够以此为经验来考量新的挂单量是否达到相应的量级;人脑对近期的行情表现有印象,清楚市场交易是属于清淡还是火热状态,对心目中支撑位/阻力位的合理挂单量进行了相应的调整;在看见限价指令薄的一瞬间,就能立即锁定几个大额挂单作为支撑位/阻力位的备选项;迅速判断出备选的几个大额挂单在量级上的差异,从而确定支撑位/阻力位。在量化交易中,我们不可能人工对支撑位/阻力位进行一一标记,只能交给程序来进行相关判断。使用平均值法或移动平均法似乎能简单地解决标记问题,但其适应性和“智能性”还有一定的欠缺。因此,我们使用贝叶斯统计来判定支撑位和阻力位。在进行正式的介绍之前,先以一个不太严谨的例子来介绍贝叶斯统计:一个原始人始终在地下洞穴中生活,某天他偶然来到了地面。他不确定太阳是否每天都会升起,于是先按照自己的经验提出假设,然后再进行观测。若他假设太阳每日都会升起,而每天的观测数据也证实了太阳升起这一事件,那么他便可以得出太阳每天都会升起的结论;相反,若他假设太阳不会升起,而每天的观测数据与他的假设不同,基于实验数据推翻了假设,也会得出相同的正确结论——只不过这位原始人为了更有把握,可能较前一种情况观测得更久一些。这其实就是贝叶斯统计所蕴含的思想——不管假设如何,通过观测数据来修正假设,最终得出符合观测事实的结论。这也类似于人类在科学探索中提出假设,进行实验观测,得出最终结论的方式。可见,从这个意义上来讲,贝叶斯统计与人类的思考和探索方式是具有一致性的。1、贝叶斯统计方法统计学中有两个主要的学派,频率学派和贝叶斯学派。他们之间既有共同点,又有不同点。基于总体信息和样本信息进行的统计推断被称为经典统计学,它的基本观点是把数据(样本)看成是来自具有一定概率分布的总体,所研究的对象是这个总体,而不局限于数据本身。二十世纪下半叶,经典统计学在工业、农业、医学、经济、管理、军事等领域获得广泛的应用。这些领域中又不断提出新的统计问题,这又促进了经典统计学的发展。随着经典统计学的持续发展和广泛应用,它本身的缺陷也暴露出来。统计推断中,除了上面提到的总体信息和样本信息外,在周围还存在着第三种信息——先验信息,即在抽样之前有关统计问题的一些信息,主要来源于经验和历史资料,它也可以用于统计推断。基于总体信息、样本信息和先验信息进行的统计推断称为贝叶斯统计学。它与经典统计学的主要区别在于是否利用先验信息。在使用样本信息上也是有差异的。贝叶斯学派注重已出现的样本观察值,而对尚未发生的样本观察值不予考虑;贝叶斯学派很重视先验信息的收集、挖掘和加工,使它数量化,形成先验分布,参加到统计推断中来,以提高统计推断的质量。忽视先验信息的利用,有时是一种浪费,有时还会导致不合理的结论。2、贝叶斯公式在全概率公式的假定下,有
波卡周报:Rococo升级成功,每个测试平行链增至17个验证人:根据波卡周报,Rococo升级成功,目前每个测试平行链增加至17个验证人。
19号公投正在等待执行取消了一个错误提议,已经以> 99.9%的赞成票获得通过。
更具争议性的是21号公投,希望迅速增加验证人的数量,目前以7.75%的支持率失败。
波卡官方公布Kusama拍卖细则,Kusama可扩展的多链体系结构的关键是,平行链通过无需许可的拍卖在中继链上租用一个槽来连接网络。作为Polkadot的金丝雀网络,Kusama将首先推出平行链拍卖以进行测试和优化。平行链很可能一开始是逐渐上线Kusama网络的,这样是为了确保一切可以顺利进行,但没有任何承诺。
Patract在polkaassembly上发布一个帖子,以征集有关下一个Redspot里程碑的国库计划的反馈。
Tether CTO宣布将在波卡和Kusama网络的平行链Statemint上发行USDT稳定币。
当前Era获得奖励的最小质押DOT数是262.8 DOT。
Kusama理事会正在讨论CryptoLocally 提出的将Kusama集成到CryptoLocally的国库议案。(PolkaWorld)[2021/4/11 20:08:12]
这个公式就叫做贝叶斯公式,是概率论中一个著名的公式。这个公式首先出现在英国学者T·贝叶斯去世后的1763年的一项著作中。
波卡周报:以自动方式启动大于1000个验证人的提案已通过:波卡Polkadot今日在官方平台更新本周进展,主要包括:1.7月6日,Parity工程师Jam提出以一种自动的方式,缓慢有度量的启动大于1000个验证人的过程。目前该议案已经投票通过,并开始执行;2.7月7日,波卡发布新的视频,提醒2017年DOT分配参与者,当时的DOT分配是通过Parity的钱包生成的。此过程不再得到广泛支持,并且与当前的BIP39标准不兼容。3.7月7日,波卡发布Gavin分享波卡治理的最新活动视频,去中心化加密经济系统是经济上强大的实体,控制着非常大的价值(亿万甚至数十亿美元)。治理对于最大化这些资源至关重要。截止发文,波卡主网的staking数据:波卡目前的版本:Polkadot CC1, version 13;现阶段:第二阶段NPoS,可进行提名和验证人设置;全网已发行(映射)DOT:831.7万;验证人:197个;候选验证人:178个;提名人:748个;抵押率:54.98%,即457.3万个DOT正在进行staking;上一个era奖励:1,821个DOT,一个ear=24小时。[2020/7/12]
3、先验分布的确定贝叶斯统计中要使用先验信息,而先验信息主要是指经验和历史资料。因此如何用人们的经验和过去的历史资料确定概率和先验分布是贝叶斯学派要研究的问题之一。在经典统计中,概率是用非负性、正则性和可加性三条公理定义的。概率的确定方法主要是两种。一是古典方法(包括几何方法),另一种是频率方法。实际中大量使用的是频率方法,所以经典统计的研究对象是能大量重复的随机现象,不是这类随机现象就不能用频率的方法去确定其有关事件的频率。这无疑就把统计学的应用和研究领域缩小了。譬如,很多经济现象都是不能重复或不能大量重复的随机现象,在这类随机现象中要用频率方法去确定有关事件的概率常常是不可能的或很难实现的。贝叶斯学派是完全同意概率的公理化定义的,但认为概率也可以用经验确定,这是与人们的实践活动一致的。这就可以使不能重复或不能大量重复的随机现象也可谈及概率。同时也使人们积累的丰富经验得以概括和应用。贝叶斯学派认为一个事件的概率是人们根据经验对该事件发生可能性所给出的个人信念,这样给出的概率称为主观概率。对于先验分布的确定,可以利用先验信息或者边缘密度。而对于没有先验信息的情况下确定先验分布,许多统计学家对这个问题进行了研究,至今已经提出了多种无信息先验分布,例如,贝叶斯假设。4、似然函数
5、后验分布的计算贝叶斯公式的密度函数形式
贝叶斯公式的离散形式
6、贝叶斯统计在比特币支撑位和阻力位判定中的应用
备选大额挂单数据的保存我们在数据库中保存初步筛选的大额挂单,取一定的时间间隔,对最新的时间间隔的这些挂单数据进行统计分析。筛选条件和时间间隔的大小是根据特定的模型决定的,这里不做特别的指定。先验分布我们的先验分布有三个。第一个是均匀分布,其随机变量用mu表示,均匀分布的上界和下界分别为上述保存的大额挂单的最大值和最小值,故取其中任意一个数值的概率是相同的。这样,此区间的任意一个数值都有同样的机会被选中,这就在模型中减弱了主观因素的影响。第二个是半正态分布,其随机变量用sigma表示,其标准差根据特定的模型决定,可根据实际情况调整。采用半正态分布的原因是这些大额挂单都是正数。第三个是一个均值较小的指数分布,其随机变量用nu表示。这同样是一个很弱的先验。似然函数我们用t分布而非正态分布来描述似然函数。t分布的三个参数:均值、尺度和自由度分别为mu、sigma和nu。t分布常常用于对呈正态分布的总体的均值进行估计,其峰度比标准正态分布低,尾部比标准正态分布厚。t分布并不像高斯分布那样聚集在均值附近,它希望看到在偏离数据中心的两个方向上都有数据,因此可运用其来解决异常值。在本文的模型中,与正态分布相比,t分布的估计值更鲁棒。而限于篇幅,我们将不再详细介绍边缘分布。统计分析以2021.2.419:40为例,我们对本模型并行运行4次,对同一个参数获得4条并行的迹。
图6收敛效果由上图可知,后验分布中的参数mu、sigma和nu均已收敛。我们同时采用Gelman-Rubin检验来判断收敛情况,该检验的思想是比较不同迹之间的差异和迹内部的差异,如果得到的值低于1.1,则可以认为相应的参数已经收敛。经过计算,mu、sigma和nu在此检验下的值分别为1.02、1.02和1.01,故应视为收敛。我们获得后验分布的参数的贝叶斯估计如下:
图7后验分布的参数的贝叶斯估计我们比较关心的是mu的情况。观察第2行,HDI是一个概率,由后验分布观测新数据形成,97%的HDI给出了97%的最可信的值,我们取其为合格支撑位/阻力位应满足的挂单量限制,其数值为401.8万美元。在此限制下,便可得到合格的支撑位和阻力位:
图8支撑位和阻力位如上图所示,在此时刻无合格的支撑位,有3个价格分别为38000,38500,38730美元的阻力位。偏离合理价格过大的阻力位不纳入到分析之中。而根据经验,最近一段时间的支撑位/阻力位的下限随行情的变化在200-800万美元之间变动。由于现货不能像期货一样使用高倍杠杆,在此范围内的挂单量就已经比较巨大了。三、结论与讨论本文采用贝叶斯统计对比特币的支撑位和阻力位进行了判定。在此问题的处理上也可采用更为简单的平均值法和移动平均法,但其适应性和“智能性”与本文所用的方法相比会有一定的欠缺;也有更加复杂的方法可对此问题进行讨论,而与之相比本文的模型简单、易于理解、计算便捷,具有一定的优势。在有条件的情况下,可以尝试采用此法作为量化指标来运行交易程序。需要注意的是,支撑位和阻力位的判定一般在震荡行情的交易中才略有效果,在实际交易中还应结合其他指标一起运行,以便控制风险。参考文献任枫.非对称双指数跳跃扩散模型的贝叶斯分析.天津大学硕士学位论文,2007.22-24陈希孺.概率论与数理统计.合肥:中国科学技术大学出版社,2016.32-150
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。