区块链性能测试与优化-上篇_区块链:XCH

大纲

本篇文章目的是通过具体示例,介绍完整的性能项目过程,具体内容介绍区块链性能测试中使用的:1.基本概念2.常用工具3.性能调优的常见情况这3块内容涵盖的内容非常多,每一个内容都有很多书籍和文章介绍,详细的内容不会出现在本文中。基本概念

区块链的性能测试,方法论上与传统的性能测试没有不同。性能测试有很多混乱的概念,这里我列出本文描述概念做一些定义。性能测试的定义

性能测试是对系统或者服务的性能指标建立监控策略,在特定场景下执行测试,分析判断性能瓶颈并调优,最终得出性能结果来评估系统或者服务的性能指标是否满足既定值。这里结合cosmos-sdk的simapp区块链来解释。1.需要明确指标,一般指两类指标:技术指标、业务指标。技术指标一般是TPS,响应时间,资源利用率,对应到区块链一般是指每秒可以处理多少笔交易?这些交易的响应时间或者统计结果是多少?在这种情况下系统使用的资源处于什么状态?期望满足的业务指标,应该来源于生产环境统计,以cosmos-sdk的生产应用cosmos-hub为例,其现阶段出块时间大约6秒,每个区块中的交易数大多数小于10。期望的业务指标设定为TPS为100是较为合理的。。2.测试模型:是真实场景的抽象,描述业务模型是什么样的。以cosmos-hub为例大致就是,分布在全球的区块链节点,在验证者节点约500个,活跃验证者节点约为200的情况下处理交易。测试时可以按比例抽象实际情况。3.测试方案:包括测试环境,测试数据,测试模型,性能指标等。对比区块链系统的测试,就是确定测试架构,准备好如1000个用户,每个用户余额1000stake这样的内容。4.需要有监控:监控的对象有压力机、区块链节点、其他如负载均衡服务器等。云原生时代的监控一般是Kubernetes+Prometheus+Grafana。5.需要测试条件:硬件环境,测试执行策略等。例如:4C8G,前60秒,每秒增加10个线程。6.需要有场景:指性能场景,正式化的描述是:在既定的环境、既定的数据、既定的执行策略、既定的监控之下,执行性能脚本,同时观察系统各层级的性能状态参数变化,并实时判断分析场景是否符合预期。性能场景,有时被称为测试用例其实是不对的。7.要有结果报告:报告内容当然就是实际的指标数据。性能场景分类

TOP Network CMO:老牌公链可能被新生公链代替:在本期金色沙龙上,TOP Network CMO Noah Wang指出,公链赛道一定会面临洗牌,属于老牌公链的辉煌已经过去,也一定会有新生的公链黑马来代替它们的地位。他解释说,以太坊、EOS这些公链发展了这么多年,并没有真正实现应用的落地,而目前一些新兴的公链无论是在技术上还是落地潜力都不输以太坊,最关键的是老牌公链的技术框架以及生态布局基本已经定型,要转变赛道是非常困难的,这也是为什么以太坊2.0迟迟没能推出的原因之一。

同时,他也补充说,这并不意味着老牌公链一定会死掉,新生公链一定能成功,具体还是要看这个公链项目是否真的有价值,是否真的能够落地。特别是在当前的熊市环境下,一定会淘汰一大批只有白皮书的区块链项目。但是对于那些真正有技术,有落地潜力的公链来说反而是机会,能够让人们看到这些项目的真正价值。[2020/3/18]

1.基准性能场景:做单交易/接口的容量,为混合容量做准备。2.容量性能场景:混合容量测试是因为线上真实场景就是由不同的业务组成的,所以由这些业务按照不同并发比例发起梯度压测就是混合容量测试场景。3.稳定性性能场景:核心就是时长,在长时间的运行之下,观察系统的性能表现。这个时长的设置,应该来源于运维周期。4.异常性能场景:在强压力之下,模拟异常。重要的性能指标

分析 | 老牌山寨币狗狗币走势或将出现变动:说起狗狗币,相信大家都不会陌生,这是诞生于2013年的老牌山寨币,从其历史走势可以看出狗狗币走出过几波独立于比特币的行情?。目前狗狗币走到三角形整理末端,图中可以看出其走势将有再次重复其历史走势的可能,回顾之前走势,大多数突破都有类似模式,布林带逐渐收紧并且交易量也在减少,从三角形末端向上放量突破,大家可留意下此币。[2019/3/7]

性能测试的指标有很多,比如:1.RT,ResponseTime2.HPS,HitsPerSecond3.TPS,TransactionsPerSecond,这里的Transactions在传统的应用中一般称为”事务“,在区块链领域指”交易“4.QPS,QueriesPerSecond5.PV,PageView6.Throughput7.IOPS,Input/OutputOperationsPerSecond比较重要的指标有资源使用率、吞吐量、响应时间,服务提供方比较关心前两者,用户更更新后者。关于这些指标的一般情况引用PerformanceTestingMethodology(http://hosteddocs.ittoolbox.com/questnolg22106java.pdf)中的经典图来说明,实际情况可能不同。图中定义了3线3区域3状态,这个图值得多看看,能够大致理解指标简的关系。1.3线:Utilization,Throughput,ResponseTime2.3区域:LightLoad,HeavyLoad,BuckleZone3.3状态:ResourceSaturated,ThroughputFalling,EndUsersEffected

动态 | 加州老牌金融公司IDC与数字资产交易所合作:据cryptoglobe报道,总部位于加利福尼亚州的外汇分销平台和在线交易平台提供商Integral Development Corp.(IDC)已宣布将与数字资产交易平台Mint Exchange合作,以推出机构级别加密货币交换。[2018/11/16]

其他

1.一般需要在什么时候做性能测试。a.项目上线前,估计系统承载能力b.项目重构后,评估效果2.如果一个项目得到性能报告就终止,这样就只是性能验证。做完全面的性能测试,同时将系统调优到最优状态,才算是一个完整的性能项目了。性能调优耗时长,还可能需要开发参与,代价高。区块链性能测试区块链的性能测试的指标最重要的是TPS与延迟,a16z的文章Whyblockchainperformanceishardtomeasure对此做了很有洞察的讨论,说明了为什么这两个指标很难测量和比较。其主要内容有以下方面:延迟

延迟的这段时间的起点和终点如何定义?1.起点是用户点击提交还是交易到达内存池?2.终点是交易被第1个区块确认?还是被第6个区块确认?又或者是最终用户收到接口响应的时间?3.有些区块链系统对交易会等待一定延迟和到达一定数量才开始处理。这样比较幸运的就是最后加入的交易,其处理延迟最短。4.对于上诉问题的一种折中方案是,即准确评估整个系统需要考虑延时的分布,而不是将其延迟看做单一数字。5.有些区块链系统的交易处理是有优先级的,fee高的交易很快确认,fee低的相对慢些。fee的不同对交易的延时和TPS的统计是有影响的。吞吐量

声音 | 链塔智库:老牌BBS社区与区块链创业公司展开了激烈竞争:据链塔智库,老牌BBS社区与区块链创业公司展开了激烈竞争。区块链社区网络平台的激励机制构建还不够完善,滋生了大量工作室控制批量账号恶意刷赞赚取奖励的现象,给社区平台生态构建造成极大影响。区块链社交平台的最大优势在于独特运营机制所保证的高质量内容生产,因此,如何优化激励机制,保证内容质量就成了社交平台今后发展的关键。[2018/8/27]

区块链中的吞吐量,即TPS(TransactionPerSecond)来衡量,这里的transaction显示不是平等的,最简单的例子就是以太坊中的交易,它可以是转账也可以是调用合约。因此,得出TPS需要指定T指代的是什么。另外一个实际的问题是,用户其实不关心一个区块链的TPS是多少,用户只关心如何少用fee并尽快完成交易。从这个角度来讲,TPS只对系统服务提供商有意义。基本工具

压力工具

压力工具一般用Jmeter或者特定应用专用测试工具如下:1.hyperbench/hyperbench2.hyperledger/caliper:Ablockchainbenchmarkframeworktomeasureperformanceofmultipleblockchainsolutions3.https://github.com/xuperchain/xbench4.…使用Jmeter应该是更贴近使用场景,更通用。一般与区块链节点进行交互的方式有1.gRPC协议2.HTTP协议(REST接口)Jmeter支持的Sampler支持有HTTP,对gRPC协议的支持需要借助插件jmeter-grpc-request监控工具

老牌矿池F2Pool鱼池宣布挖BTC手续费全免:昨日,老牌矿池F2Pool鱼池发布公告称挖BTC手续费全免,并且为pps+收益分配,目前此为全网最高的分配模式。[2018/2/24]

监控工具一般用Prometheus这工具可以监控的内容比较多,其生态如图(https://prometheus.io/assets/architecture.png)。在测试区块链应用的实践中,一般是先使用docker-compose部署多个区块链节点模拟正式进行测试的环境,因为正式的测试环境一般硬件配置较高,如果不是自建机房,使用云服务厂商的机器,费用昂贵,这样做可以节约成本。docker-compose中可以限制容器使用的资源,如内存和CPU算力,甚至绑定CPU核心,对这些资源的监控可以使用cadvisor。为了验证CPU限制是否准确,可以用stress-ng压满核心,看统计结果是否与限制值一致。

性能调优

一般遇到性能瓶颈的常见元原因会是网络、CPU、磁盘IO。引发磁盘IO的瓶颈的操作有写日志频频繁,打印不必要的日志,通过网络访问磁盘等。这些资源都会通过系统调用来完成,跟踪系统调用,可以使用strace来查看执行了哪些系统调用,以及在这些调用上花费的时间等信息还可能遇到的问题是系统不稳定,可以表现为CPU使用率/TPS不稳定。如果在LightLoad区域选择一定的并发压力,TPS波动较大的话,可能就是系统设计得不好,需要找到原因和优化了。如果是CPU使用率不稳定,从CPU指令执行层面来看为CPU处于idle状态的时长参差不齐。这种情况下的原因并不在于有CPU有idle,而是在于处于idle的时间段有长有短。需要借助Linux系统工具、程序对应的profilling工具来观测,找到原因。分析工具

要解决性能问题,首先需要找到原因,寻找原因的分析工具可以参考下图(https://www.brendangregg.com/Perf/linux_perf_tools_full.png)。这是Linux性能分析最重要的参考资料了,显示了在不同子系统出现性能问题后,应该用什么样的工具来观测和分析。

磁盘IO

磁盘IO一般会导致系统瓶颈,磁盘IO栈比较长,分析起来难度不小。熟悉IO栈,有助于我们发现问题(https://www.thomas-krenn.com/en/wikiEN/images/c/c2/Linux-storage-stack-diagram_v6.2.pdf)

找到原因后,如果能够通过调整操作系统参数或者应用系统参数优化性能是比较快捷的,如果需要修改代码,则会涉及系统架构优化,会有涉及和编码工作,调优周期会很长。下一篇文章将分享使用cosmos-sdk中的SimApp来进行性能测试以及在性能调优方面的方法。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金宝趣谈

比特币价格Web3代币战争的护城河_ETH:FRA

一年前,我们曾谈及Web3时代的聚合理论。在Web2.0时代,聚合平台因为打破了分销成本而受益,将许多服务提供者汇集到一起。像亚马逊、优步或抖音这样的平台受益于数百个供应商为用户提供服务.

[0:15ms0-6:45ms