Banksea Finance:退化猿 NFT 市场分析报告_WEB:NFT

作者:BankseaFinance

1、介绍

近年来,NFT市场有变得非常火热,越来越多的用户选择对NFT进行投资。在这些NFT项?中,DegenerateApeAcademy项目非常具有代表性,DegenerateApeAcademy是位于Solana区块链上的NFT品牌。该品牌由10,000个退化猿NFT组成。根据solanart市场平台的统计,该项?项目的交易总量到达1.11MSOL。在这篇分析报告中,我们使用退化猿项目的历史成交数据,对交易数据进行统计分析,探究退化猿项目的交易行情,为希望购买的用户提供?些参考。

BankseaFinance开发了NFTAIOracle来评估NFT价格,提供了一个基于资金池的NFT抵押贷款解决方案。通过使用NFTOracle,用户可以获得实时的NFT价格评估。Banksea是SolanaIgnition全球黑客马拉松的获奖者之一,并与Parrot,Moonbeam,Slope等项目建立合作。

2、数据说明

本次分析数据从Solanart交易市场获取,获取了DegenerateApeAcademy项?从2021-11-21到2022-03-19期间的17985条成交数据,覆盖其中7936个活跃的NFT。通过对这些活跃NFT进行分析,探究其活跃属性的稀有度、NFT流通性和升值潜力等信息。

巴菲特抛售Visa和Mastercard股票,买入10亿美元的Nubank:金色财经报道,巴菲特的伯克希尔哈撒韦公司抛售了部分Visa和Mastercard持股,并增加了巴西最大的金融科技银行Nubank的投资敞口。该公司已在2021年第四季度购买了价值10亿美元的NubankA类股票,同时分别出售了价值18亿美元和13亿美元的Visa和Mastercard股票。

伯克希尔哈撒韦于2021年7月向Nubank投资了5亿美元。在Nubank在纽约证券交易所(NYSE)首次亮相后,到2021年12月,其上述投资的回报为1.5亿美元。Nubank旗下交易平台Easynvest自2021年6月以来一直在积极提供比特币交易所交易基金(ETF),该ETF名为QBTC11,由QR资产管理公司支持并在B3证券交易所上市。(coindesk)[2022/2/16 9:54:39]

SOL—Solanart交易市场-DAPE系列交易情况

3、NFT分析初探

3.1交易数据分析

?先,我们清洗和处理了NFTs历史交易数据,并计算聚合数据,包括交易次数、交易均价、交易间隔、稀有度和属性热度值等指标,相关解释如下:

活跃属性稀有度(active_attribute_rarity),取值范围0-1。active_attribute_rarity表示活跃NFT属性的稀有百分?。因为仅仅统计有交易历史的NFT,所以稀有度会比?solanarpopularityt.io中的稀有度低,但是更接近于真实的市场状况。

数字资产托管机构FV Bank计划发行与加密货币相关的Visa卡:金色财经报道,数字银行和数字资产托管机构FV Bank宣布已获准成为Visa的主要成员,还计划发行与加密货币相关的Visa卡。新的Visa借记卡将补充其服务套件,并计划以候补名单的形式在2021年底前向FV银行业务和个人账户持有人提供。FV Bank的Visa卡将为其企业账户持有人提供为多个授权员工获取卡的选项。此外,FV Bank计划在2022年初推出信用卡版本,这将使用户能够利用数字资产作为信用额度的抵押品。[2021/10/29 6:18:35]

活跃属性稀有度(active_attribute_rarity)越低,表示该属性越稀有。

3.2Pearson相关系数介绍

在统计学中,Pearson相关系数来衡量两组数据之间的线性相关性。它是两个变量的协?差与其标准差的乘积之比;因此,它本质上是协方差的归?化后的数值,因此结果始终具有介于-1和1之间的值,我们可以通过Pearson相关系数对统计特征进行相关性分析,找到特征之间的线性关系,探究特征之间的关联性。

皮尔逊相关系数在应用于总体时,通常由希腊字母ρ(rho)表示,可称为总体相关系数或总体皮尔逊相关系数。给定?对随机变量(X,Y),ρ的公式为:

LBank蓝贝壳于6月24日21:00上线STA,开放BTC和USDT交易:据官方公告,6月24日21:00,LBank蓝贝壳上线STA(STOA),开放BTC和USDT交易,6月23日21:00开放充值,6月25日21:00开放提现。资料显示,DeFi STOA是一个建立多元化收入分享平台的项目,通过利用全球金融平台之间的套利算法来提高代币资产的增长和代币价值。[2021/6/22 23:56:29]

其中:

cov是协方差

σx是X的标准差

σY是Y的标准差

ρ可以用均值和期望来表示。

3.3交易数据相关性分析

根据历史交易数据,我们可以计算出?些统计指标,包括交易次数、均价、交易时间间隔、稀有度和热度等,然后通过Pearson相关系数,计算出指标之间的相关性,具体结果如下图所示:

统计结果为?个正方形矩阵的X和Y轴都表示的统计指标,对从左上角到右下角的角线表示全为1,表示属性的自相关为1,分别按水平或者竖直的方向去看,分别表示与其他特征的相关系数,系数为-1到1之间,1表示完全线性正相关,-1表示完全负相关,具体特征解释如下

结论:

LBank蓝贝壳于5月2日22:00上线TRU(Truebit Protocol) ,开放USDT交易:据官方公告,5月2日22:00,LBank蓝贝壳上线TRU(Truebit Protocol),开放USDT交易,5月2日20:00开放充值,5月4日18:00开放提现。资料显示,Truebit是区块链增强协议,使智能合约能够在降低Gas成本的情况下,用标准编程语言安全地进行复杂的计算。[2021/5/2 21:18:37]

交易次数(transaction_cnt)与活跃属性稀有度(active_attribute_rarity)呈现显著的正相关,既属性约稀有,成交易次数越多,市场活跃度越高。

属性热度(attributes_popularity)与成交均价呈明显的负相关,与平均交易间隔天数(days_between_transactions_avg)呈现显著负相关,既属性越稀有成交均价越高,且出售时间间隔越低。可以推断出,市场对稀有属性更加?睐,其流动性更强,且买家更愿意出高价。

交易均价(transaction_price_avg)和平均交易间隔天数(days_between_transactions_avg)呈现明显的正相关,既对于大多数交易而言,价格越高,流动性越差,每次交易间隔的时间越?。当然这并不是?个完全线性的结论,因为还有很多其它因素也会对价格和流动性产?影响。

LBank“LBK双倍回购”第四期共回购155346.846 USDT:据悉,LBank“LBK双倍回购”第四期于10月19日16:00开始至18:00结束。本期共587个通过KYC认证的LBank账户下单,90,109,272LBK参与回购,实际回购 9,709,177LBK。该部分LBK将全部用于销毁。

“LBK双倍回购”为LBank回馈LBK社区用户所创,每两周一次,对LBK进行双倍价格回购,且每次回购价格不低于上一次回购。更多详情可登录LBank官网进行查看。[2020/10/19]

4、NFT数据洞察

根据NFT交易历史数据,按照NFT属性的维度,分别对活跃属性的稀有度、属性的平均交易价格、属性的平均交易间隔天数进行统计,然后对统计数据进行线性拟合,找到存在低估的NFT属性。

4.1数据统计

活跃属性稀有度Top10

属性平均交易价格Top10

平均交易间隔天数Top10

4.2稀有度&交易均价分析

根据上述分析,我们已知?个NFT的属性约稀有,其交易均价越高,呈现显著的负相关。那我们对其进行线性拟合,然后找到偏离拟合曲线,且被存在低估的属性。这些属性发生交易时候,成交均价低于平均的拟合价格,存在价格低估的可能。比如通过简单的筛选条件,筛选活跃稀有度<0.04,交易均价<100SOL以下的属性,然后去选购包含此属性的NFT。

4.3稀有度&交易间隔时间分析

根据上述分析,我们已知?个NFT的属性越稀有,其价格会越高,但是过高的价格又会抑制交易的发?,使得交易的时间间隔变长,流通性下降。所以我们需要找到那些稀有度和估价尚可,但是流通性强的属性值,既然偏离拟合曲线,并且处于拟合曲线左边的属性,然后筛选出流通性强的属性进行购买。

结合上述价格&流通性&稀有度的分析,进?如下筛选:

活跃稀有度(active_attribute_rarity)<0.4

交易天数(days_between_transactions_avg)<0.5day

交易均价(transaction_price_avg)<100Sol

下图是筛选过后的部分数据截图,详细完整数据请查看文末数据获取方式。

部分字段的解释说明

根据上述的分析结果,在solanart平台中筛选包含对应属性的NFT,然后根据自己的喜好进行购买。

DegenerateApeAcademyNFT购买链接

4.4交易者分析

持有者出售效益

NFT出售的时候,只有13%的交易过程是亏损出售的,大部分是在上涨盈利的时候进行出售的,也就是说大部分nft持有者都是盈利的,同时也是比较认可NFT价值的坚定持有者,能等待时机进行有效盈利。

NFT总盈收Top20的持有者总营收和交易出?度情况(买?卖出数量)

在盈收最多的20?中,有很多是只卖不买的持有者,可以?概率推测是NFT制造者,这部分交易者看起来零成本,但是并不是整个交易市场的最?收益者。最?收益者来

?于那些极端的投机者,只买卖或持有少数?个NFT,但是在?段时间内卖出了天价。所以,在某种程度上来说,NFT和彩票类似,买对了确实可以带来巨?的收益。

NFT总盈收Top20的持有者卖出的每个NFT盈收情况

盈利排名前二十的?员盈收大部分集中在0~1000之间,单个NFT的盈利大于1000的比较少。那么我们在选购NFT的时候,如果仅仅作为价值投资,成本可以限定在1000以?内,因为NFT本身的盈利区间就那么大,真正能暴涨的NFT数量只占极少数,如果稳步投资,也能进?到盈收榜单的前20。

NFT平均收益率Top20的持有者

总盈收最高的不?定是最佳的投资者,从上?的分析可以看到,很多交易量极?的投资者获取到的收益远远大于?些NFT的制造者。这类投资者要么有更好的眼光,要么有更好的运?,当然也有可能有着更强的舆论控制和分析能力,那么这类投资者持有NFT有可能可以成为其他投资者的风向标,研究这类投资者的交易特征,可以帮助投资者更有效的选择NFT。通过NFT平均收益率可以比较清晰找出这类投资者,如果要进?价值投资,可以持续关注这类NFT持有者的?些投资情况。

比如筛选:

平均收益率(average_income)>500

投资回报能力(effective_revenue)>0.8

5、NFT分析进阶

根据上述分析,对NFT属性特征进行聚合,统计出NFT的相关统计指标,为NFT选购者提供数据参考。

属性相关字段:

NFT相关字段:

TODO

上文只结合市场数据进行了简要的分析,还有很多待分析维度

亏损出售是在什么时间段进行抛售的,是否存在恐慌盘情况,是否是风险期?亏损出售的nft是否存在价值被低估的情况?

高收益者比较倾向于选择拥有哪些属性的nft?

大量买进的交易者最后的营收情况如何?

有哪些持有者卖出的NFT最后呈现出较大的潜力?平均收益率最高的持有者所买NFT有何特点?

总结

根据对退化猿NFT系列的分析,可以发现,最终交易的价格、稀有度、流通性都存在非常强的相关性,?定程度上会影响最终的成交价格,对NFT的选购有?定的参考意义,但是影响NFT价格的因素很多,若要得到?个合理的NFT估值,除了交易数数据外,还需要结合币价市场波动、社交媒体数据、社区舆论数据等数据,并构建实时的NFT估价模型,实时性预测和监控价格趋势,降低持仓风险。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金宝趣谈

[0:15ms0-3:824ms