零知识证明:zk- ASM可能代表Web2和Web3的现实汇合点_NET:WEB

简介

零知识证明,特别是zk-SNARK(SuccinctNon-interactiveArgumentsofKnowledge)可能是Web3前沿最重要的技术之一。虽然该子领域的大多数媒体和投资的关注都集中在zk-Rollup上,这种扩展解决方案为以太坊等L1区块链提供了巨大的可扩展性,但这绝不是zk-SNARK的唯一应用。在这篇文章中,我们将深入分析零知识汇编代码(或zkASM)的概念,评估它在zk-Rollup和其他领域的用例,探索它在重新发明我们所知道的互联网方面的理论可能性。

技术原理

zk-ASM,顾名思义,主要包含两个技术部分:zk和ASM。zk部分指的是zk-SNARK,而ASM部分指的是汇编代码。要理解zk-ASM的潜力,我们必须首先理解这两个看似神秘的概念的理论基础。

zk-SNARK

zk-SNARK是zk-Proof皇冠上的宝石:它们是一种简洁的证明,证明某个陈述是正确的,在证明时没有透露任何关于被证明数据的信息。例如,假设某人断言“我知道一个m使得C(m)=0”,其中m是一个千兆字节长的消息,C是一个函数。zk-SNARK将是一个非常简短的证明(<1GB),可以快速验证,并且不会透露任何关于m的信息(除了公开可用的信息)。

那么C(m)到底是什么?它有什么用?这个函数实际上是一个算数电路,或者是我们想要执行的特定函数的有向无环图(DAG)表示,如图所示。“m”本质上是进入电路的输入数据,电路中的特定“节点”是单独的逻辑门或算数运算。例如,“+”节点可能有“2”和“3”作为输入,并将“5”输出到下一个运算符。因此,可以在“算数电路”中对任意算数或逻辑运算进行编码。

Emerchantpay Limited已向Ibanera投资1850万美元:金色财经报道,欧洲支付公司 Emerchantpay Limited 已以 1.95 亿美元的贴现估值向数字银行及支付公司 Ibanera 投资 1850 万美元,所筹资金将用于支持其支付平台 BitLine。[2023/3/15 13:06:21]

算数电路的例子。资料来源:https://cs251.stanford.edu/lectures/lecture14.pdf

一旦我们有了这个算数电路作为我们想要运行zk-SNARK的代码的表示,我们就可以开始构建这个zk-SNARK了。从根本上说,因为“代数基本定理”,使得zk-SNARK是可能的,该定理指出,一个“d”次多项式最多有“d”个根。数学技巧分为两个步骤:(1)以某种方式将我们想要证明的函数“f(m)”转换为一个多项式(并坚持下去),(2)使用“代数基本定理”与多项式相互作用,并提供一个简洁的证明。在技术术语中,第一部分被称为“PolynomialCommittmentScheme”(PCS:多项式承诺方案),第二部分被称为“PolynomialInteractiveOracleProof”(PIOP)。

Silvergate Bank须向BlockFi返还985万美元:金色财经报道,根据周五的一份法庭文件,美国破产法官Michael B. Kaplan表示,Silvergate Bank必须向加密借贷机构BlockFi返还985万美元。BlockFi于2022年11月申请破产保护。在提交申请后不久,BlockFi就开始与Silvergate谈判,以释放其存放在Silvergate储备账户中的1000万美元。双方已于本周五达成协议,Silvergate将在两个工作日内返还大部分资金。据此前消息,Silvergate Capital Corporation在提交给美国证券交易委员会(SEC)的文件中表示,该公司可能\"资本不足\",并表示正在\"重新评估其业务\"。[2023/3/4 12:41:50]

通用电路的有效SNARK的组成部分。资料来源:https://cs251.stanford.edu/lectures/lecture15.pdf

虽然PCS和PIOP的具体实现超出了本文的范围,但到目前为止,我们已经获得了zk-SNARK核心步骤的粗略草图:

想运行zk-SNARK,就需要有一个函数的选择(代码函数,数学方程等);将此函数编码为算数电路C(m);运行PCS得到该算数电路的多项式表示;运行PIOP以获得原始“m”大小的对数的简洁证明。我们有一个定制的zk-SNARK可以证明某人知道某个信息而不用透露信息是什么。

Crypto.com的EVM兼容链Cronos将集成Band Protocol的预言机解决方案:据官方消息,加密货币交易所Crypto.com推出的EVM兼容链链Cronos宣布正在集成Band Protocol的预言机解决方案,为DeFi和Cronos上的所有应用程序提供可靠的外部数据。[2021/8/15 22:15:02]

汇编代码

zk-ASM的第二个难题是汇编代码的思想。汇编代码是一种包含非常低级语言指令的类语言,机器很容易阅读,但人类很难破译。与Python、Java等高级语言不同,汇编语言包含非常原始的函数,例如会在处理器和硬编码内存位置上的一系列数据寄存器上移动、比较、添加和跳转。例如,在屏幕上打印数字1到9的Python代码为123456789:

下面是它的x86汇编版本:

对这么简单的操作来说,其实变得更麻烦了。那么为什么还要使用汇编语言呢?如上所述,虽然这些指令对人类来说可能不容易阅读,但它们很容易“组装”到110011001字节码中,供机器读取和执行(这称为汇编程序)。相对而言,Python和Java等高级语言更易于阅读,但用这些语言编写的程序不能直接由处理器执行。相反,我们需要依赖于一个“编译器”,它咀嚼我们编写的Python或Java代码,并吐出一堆汇编代码,然后由机器组装和执行。我们可以期望同一段Python或Java在不同的处理器和不同的操作系统上平稳运行,因为编译器完成了繁重的工作,将源代码编译为特定于该处理器或操作系统的汇编语言。

LBank将于12月24日19:30上线DDX交易:据官方消息,LBank将于12月24日19:30上线DDX/USDT交易对,并于12月24日19:00开启充值。

据了解,DerivaDEX 是一个基于以太坊的去中心化衍生品交易协议,由前量化交易公司 DRW 量化交易员 Aditya Palepu 和前 Enigma MPC 高级软件顾问 Frederic Fortier 创立,获得了 270 万美元的风险投资。更多详情可登录LBank官网查看。[2020/12/24 16:24:37]

因为所有语言都可以编译成汇编代码(汇编代码本身可以编译成可执行的二进制代码),所以汇编程序本质上就像“所有语言之母”。现在假设我们能够将汇编语言(如x86或RISC-V)中的所有操作数转换为一种算数电路表示,这样我们就能够提供这种汇编语言中所有操作数的zk-SNARK证明。这意味着理论上我们能够提供任何用任意高级语言(如Python或Java)编写的程序的zk-SNARK,这些程序可以编译成汇编语言。这就是为什么我们需要考虑zk-ASM。

实际应用

zk-EVMRollup:Polygonzk-ASM

zk-ASM最重要的应用之一是创建与以太坊虚拟机兼容的zk-Rollup,或zk-EVM。zk-EVM对于区块链的可扩展性非常重要,因为它允许程序员部署在基于zk-Rollup的L2链上,而无需修改太多(如果有的话)他们的代码]。在这个领域,Polygon的zk-EVM是一个典型的案例研究,它展示了如何使用zk-ASM来实现这一目标。

Banca推出基于Qtum的加密货币银行社区:最近,分散化和智能化的社区投资银行Banca宣布决定在分散化的区块链应用平台Qtum上建立应用。这次合作将结合区块链技术,人工智能和大数据来解决金融业面临的问题。[2018/1/22]

EVM和Polygonzk-EVM技术栈的比较。来源:OriginalContent

当程序员在以太坊L1区块链上开发时,他们通常使用Solidity进行编码。这种Solidity代码在执行前会被编译成一系列EVM操作码,如ADD、SLOAD和EQ。默认情况下,这个过程显然不会创建任何类型的zk-Proof。Polygon的诀窍是创建一个方法,将每个EVM操作码解释为它们自定义编写的zk-ASM,这对zk-SNARK非常友好。然后,他们的L2zk-EVM将执行zk-ASM,同时还创建ASM的zk-SNARK电路,以创建zk-SNARK证明。例如,EVM中的ADD操作码将被翻译成Polygon的zk-ASM,如下图:

EVMADD操作码的Polygonzk-ASM解释示例。资料来源:https://wiki.polygon.technology/docs/zkEVM/zkASM/some-examples

因为Polygonzk-EVM的招数在汇编级别上,它从普通以太坊程序员接触的代码中删除了两个级别,即“Solidity”级别。这就是为什么大多数开发人员可以将他们为以太坊主网构建的EVM代码直接移植到Polygonzk-EVM的原因。此外,由于Polygonzk-EVM将以太坊的技术堆栈“保持”到操作码级别,所有依赖于分析编译的操作码的调试基础设施都将保持可用和完整。这与其他一些zk-EVM设计不同,例如zkSync,后者不提供操作码级别的zk-Proof。因此,即使Polygon发明并证明了自己的汇编语言,Vitalik写道:“它仍然可以验证EVM代码,它只是使用了一些不同的内部逻辑来完成它。”

超越Rollup:zk-WASM

zk-EVM绝不是zk-ASM的唯一应用程序。回想一下我们之前的断言,汇编语言本质上是“所有语言之母”,并且zk-ASM的创建将为用任何编译成该汇编语言的语言编写的通用程序解锁zk-Proof。WebAssembly,或称WASM,是最重要的新兴汇编语言之一。WASM于2018年首次发布,其目的是创建一种汇编语言,以提高Web应用程序的执行速度,并为Javascript(Web背后的主要编码语言)提供执行补充。

从本质上讲,随着Web多年来的发展,Web应用程序的规模和复杂性不断增长,这意味着浏览器编译用Javascript编写的所有内容的速度通常非常慢,并且必须依赖复杂的编译-优化-重新加载周期。另一方面,WebAssembly通过提供可移植的、模块化的、易于执行的汇编语言,消除了对复杂浏览器执行引擎的依赖。此外,作为一种汇编语言,WASM允许程序员直接用C语言、C++、Rust、Java或Ruby编写在浏览器中本机运行的代码片段。因此WASM已成为“提供分布式无服务器功能”的首选技术。

那么zk-SNARK为什么会出现,又是如何出现的呢?WASM的独特之处在于它是一种客户端技术,能够直接与用户输入和数据交互。因为这通常包括敏感数据,如密码和个人信息,我们需要一种技术:(1)确保程序正确执行,(2)我们的敏感信息不会被泄露。如上所述,zk-SNARK是解决这两个问题的完美解决方案,因此是确保WASM安全的重要拼图。

虽然开发zk-WASM的工作仍处于早期阶段,但最近已经有一些项目发布了用于WebAssembly的zk-SNARK电路原型。例如,DelphinusLab的“ZAWA”zk-SNARKEmulator提出了一种将WASM虚拟机的操作数和语义编码到算数电路中的方法,从而使其能够进行zk-SNARK证明。随着时间的推移,zk-WASM电路无疑会不断优化,从而允许用通用语言(如C语言、C++、Rust和Ruby)编写的程序采用zk-Proof的范例。

结论

在这篇文章中,我们探索了zk-ASM的理论基础,并研究了zk-ASM的两个范例:Polygon使用zk-ASM创建一个操作码级别的zk-EVM,以及zk-SNARK在WebAssembly上的应用以创建zk-WASM。最终,zk-ASM的承诺是将Web2的互操作性和规模与Web3的可靠性和安全性结合在一起。

一方面,区块链越来越多地寻求超越当前吞吐量瓶颈的扩展,并有可能支持执行,而另一方面,Web2方法因未能充分保护用户数据和隐私而越来越受到攻击。由于程序员能够在他们的Web2代码中使用Web3设计范例,并在区块链上引入Web2语言和代码,通用的zk-ASM可能代表Web2和Web3世界中的一个汇合点。正是在这个意义上,zk-ASM可以让我们重新想象一个安全、无需信任的互联网。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金宝趣谈

火必下载Bankless:我们应该担心币安吗?_NCE:ORK

在过去的一周,币安发现自己成为了许多加密货币末日论者的焦点,他们担心大规模的CEX会步FTX的后尘。这种担忧来自哪里?FTX2.0即将到来吗?加密行业应该担心吗?让我们一个一个地回答这些问题.

[0:0ms0-5:350ms